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Sample-Efficient and Robust, Multi-Task Learning in the Real World

The grand challenge in creating useful real-world agents (robots) is to construct them such that
they can solve a breadth of tasks when provided with unstructured commands. This challenge hinges on
the (1) generalizability of the trained agent, (2) the agent's ability to search and find more optimal
solutions and (3) the capability to interact and learn complex skills in the real world.
Aim 1: Generalization in Decision Making:

Training large models over increasing amounts of data is proving to be a recipe for success in
creating better generalizable systems and is recently being adapted to reinforcement learning tasks '~ for
increasing skills via multi-task training. However, these methods still

& Date struggle to exploit the collected experience properly, showing large gaps
& between the model's performance and the best data in the dataset . How
g‘ r can we ensure our learning systems are extracting the best knowledge

— from the available data? Developing methods that can generalize across

& ‘ tasks, goals, data modes, and morphology to enable generalist agents that
— work in novel environments/tasks can be accomplished by learning to be

-{)}-;f ' invariant to task-unrelated changes and by training a model to combine

portions of information in the data. This ability to combine experience is a
type of combinatorial generalization that is achieved by piecing together
experience without needing to see the desired exact complete trajectory.

Creating this multi-task model may sound onerous, but this model creation challenge is a blessing
in disguise, as it allows us to create a model that can use data from any robot on any task to increase
the dataset size by an order of magnitude. This goal is akin to building a single main policy that
benefits from data from many sources to create a better model, similar to the highly successful
progression of training language translation models across more languages to increase
performance. Other potential benefits are better use of existing robot data and scaling training, which is
currently a bottleneck for robot learning compared with LLMs.

Aim 2: Discovering New Knowledge:

Artificial intelligence is in the process of accelerating science, but struggles with the vast
combinatorial options to evaluate. A promising solution in this area is to start from good pretrained
models that encapsulate the knowledge of many experts and use them with advanced exploration
algorithms to make discoveries to add to our collective knowledge. A key tool in this space is to expand
on the capabilities of reinforcement learning methods that have shown they can discover masterful
policies on complex planning problems in Go *, and with the help of LLMs, can learn mathematics °.
However, there are two hurdles to success in this space: (1) exploration is complex, and (2) even if the
agent explores well, deep learning models struggle to learn under non-stationary distributions °. To
overcome these issues, my research aims to scale deep reinforcement learning algorithms to larger models
while coping with distribution change ''? and to increase exploration methods for RL agents ',
including methods for molecule discovery .

Aim 3: Learning Skilled Behaviours Autonomously

What objective function is necessary to incentivize an agent to become a multi-skilled
generalist? While recent work has been able to extract reward functions from LLMs '*', where do
LLMs, or the people who typed up all the data that LLMs train on, get their reward functions? Current
algorithms still do not yet result in agents that learn diverse skills due to poor world models and
limitations on learning optimal policies. My research improves diverse skill learning by building on
surprise minimization methods and connects these objectives to physical and information-theoretic
measures to outline the principled behaviour the agent should learn '®%°, These information-theoretic
connections of these methods allow us to understand the expected optimal behaviour, which is not
typically well understood for the average extrinsic reward function. In addition, to create agents that will
learn in the real world, it is best to find objectives that can be computed locally on embodied hardware.
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