IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 1

Interactive Architectural Design with Diverse
Solution Exploration

Supplementary Document
Glen Berseth*!, Brandon Haworth*3, Muhammad Usman*3, Davide
Schaumann?, Mahyar Khayatkhoei?, Mubbasir Kapadia? and Petros Faloutsos?
LUniversity Of British Columbia, 2Rutgers University, 3York University

1 APPENDIX

This section contains additional details related to efficiency
considerations such as metrics parallelization, optimization
framework and additional results.

1.1 Metrics Parallelization

The aforementioned metrics can be computationally expen-
sive. The construction of the visibility graph Gy (V, E) is
O(K - N?) where N = |V| and K is the total number
of obstacles in an environment. Furthermore, constructing
the trees needed to calculate depth and entropy is of order
O(N - b%) where b is the maximum branching factor of
the Gy and d is the maximum of all the minimum depths
of the Trémaux trees constructed at different vertices. This
process is Q(IN?) which means that, at best, it is as complex
as constructing the graph itself, although it is much more
complex in practice. In order to mitigate this computational
overhead, we off-load the construction of the visibility graph
and the forest to the GPU.

For the purposes of parallelization, we consider that
computing the metrics involves two main tasks: the con-
struction of the visibility graph Gy for the given environ-
ment layout, and the computation of a set of IV trees. Al-
though we discuss each task separately, our implementation
runs these computations concurrently, and not in isolation.

1.1.1 Graph Construction

We represent the strictly upper triangular part of the
|[V| x |V]|-dimensional symmetric adjacency matrix Mg
of the graph in row major fashion as a vector, V,q; of
dimension that is equal to 0.5 x (|V| — 1) x |V|. Each pair
of (i,7) vertices in V where i < j is assigned to a thread
which calculates the straight-line between the vertices and
checks whether the line intersects any obstacle. The load
assignment is designed to exploit memory alignment and
maximize GPU utilization.

1.1.2 Tree Construction

Consider the task of performing a Breadth First Search
starting at a vertex s € V' and branching until the whole vis-
ibility graph is traversed, i.e. all vertices are visited exactly
once. We introduce three binary |V |-dimensional vectors: (a)

frontier £'* holds the elements of V' that must be expanded
in the current level /, (b) children C' holds the elements of V/
that must be expanded in the next level [+ 1, and (c) parents
P holds the elements that have been already expanded. We
also keep a |V|-dimensional integer vector D which stores
the number of elements visited at each level.

A Naive Kernel. In a CUDA kernel, we assign each ver-
tex, 7 in V to one thread, that is each thread i is responsible
for one row of the adjacency matrix corresponding to the
vertex ¢. The kernel runs, level after level, until a flag is set
showing that all vertices have been visited. At each level
l, each thread ¢ first checks if its vertex ¢ is adjacent to the
Jj-th vertex of the graph, second if the j-th element is to be
expanded (F'(j) is set), third if the j-th element has not
been expanded (P(j) is not set), and if so, the thread will
set the i-th element to be expanded at the next level (set
CY(i) = P(j) = 1). After each level, the number of 1s in C"
is stored in D(I), then the child vectors are copied into the
frontier (F'*! = ('), and the child vector is reset (C'*1 is
initialized to zero vector). Note that other information can
be stored depending on the required metrics, but in this case
the number of visited vertices at each level suffices.

Cut-Off Threads. In the naive kernel, each thread has
to check exactly |V| vertices of the frontier at each level,
resulting in exactly L x|V| operations where L is the number
of levels. However, each vertex in the graph only needs to
be visited once. This fact can be exploited by cutting off
threads that have already been visited from the start of each
level, that is, stopping thread i whose assigned vertex has
already been expanded (P (i) is 1) from launching in the first
place. This results in each thread having to check at most | V|
vertices of the frontier at each level, and in practice greatly
reduces the running time.

Indexed Frontier. So far, each thread, if not cut off, has
to check all |V| elements of the frontier, even though many
may be zero (not to be expanded) at many levels. However,
each vertex in the graph can only be expanded once, that is,
each element of the binary frontier can be 1 exactly once over
all levels. Thus, the frontier is changed from a binary vector
to an integer vector which stores the indices of the elements
to be expanded. This indexed frontier is populated by an
intermediate process that first sets all elements of frontier
to 0, then starts filling it from the start with the indices of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 2

the positions of 1s in children, instead of just copying the
children vector into the frontier at the end of each level.
When a zero is encountered in the frontier (i.e. F/(j) = 0),
the kernel is terminated. This process essentially takes the
burden of passing over the whole frontier from every single
thread, to one single preprocessing thread. The result is that
no thread will pass over the frontier more than once.

Forest Construction. The tree construction process must
start at all vertices in the graph. Because one tree con-
struction is completely independent of another, all the tree
constructions may run concurrently. Therefore, the same
kernel as before is used but a new dimension is introduced
to all containers (this is essentially concatenating), and then
we put each tree process on one row of the device grid.
Thus, when the kernel runs at one level, all of the forest
is expanded one level deeper on the device. This allows for
having a very large pool of threads, and therefore maximizes
the load sharing and consequently the GPU utilization.

Performance. Note that certain operations in our calcu-
lations (e.g. entropy calculations) are especially amenable to
GPU parallelization. Moreover, the reported times include
the initialization process for each granularity which is ex-
ecuted once per optimization; therefore the actual average
times over objective calls would be considerably lower. In
our current implementation, the spatial objective are com-
puted concurrently on the GPU and a weighted sum of the
spatial metrics may be used for efficiency. The performance
analyses reported here encompass the entire spatial analysis
pipeline averaged over 5 runs.

GPU Memory Complexity. The GPU memory required
for the objective calculation on the GPU is of O(N?), more
strictly it grows with 8NV 2 where N is the total number of
vertices included in the graph. All example environments
in Table 1 take up less than 20 M B memory. Note that
the provided memory complexity is for one unified run of
optimization, a much larger environment can be processed
in subsets (chunks) of vertices.

1.2 CMA vs Simulated Annealing + MCMC

The choice of optimization algorithm to use for this type
of design problem is an important consideration. A recent
review of building architecture related optimization frame-
works highlights the numerous optimization techniques
used in the area, and reasons why some are better than
others for particular design problems [1]. Here we list the
most relevant reasons for using CMA. Simulated annealing
(SA) may need careful design of special parameter selection
methods, like the ones used in [2]. SA is a poor choice given
our desire for imposing design constraints. SA can handle
noisy objective functions but only under certain conditions
that can not be guaranteed for most building metrics. Also,
genetic algorithms (GAs), like CMA, are often parallelizable,
making the method more efficient. CMA should be better at
escaping local-minima. Last, GAs have also been shown to
show better early convergence, leading to quickly finding
good local-minima that are often good enough for these
types of design problems. CMA is a form of MCMC where
the chain is the series of generated covariance distribu-
tions [3]. You can even formulate MCMC to use a variant
of CMA for sampling to improve convergence [4] These
samplers outperform many variants of MCMC [5]

1.3 Multi-Objective Optimization Methods

There exists several methods that can be used to perform
multi-objective optimization [6]. Scalarized multi-objective
optimization combines a vector of objectives with a vector
of weights, however, finding a good vector of weights can
be challenging, especially when the objectives are of largely
different scales, as they are in our case. Pareto Front-based
approaches produce a collection of parameter settings that
are optimal trade-offs between the objectives [7]. However,
they tend to be computationally expensive, and it is unclear
how they would handle the diversity term.

1.3.1 Scalarized

Computes a weighted combination of the objectives, weight-
ing all of the objective terms with respect to some relative
weighting. This method is challenging to use for two rea-
sons. One, determining the weights to use for a combination
of objectives can be a daunting task. Also, the objectives
themselves may not be linear, with some growing faster
than others usually precluding the possibility of finding a
single set of weights that works well when the environment
changes. Second, If a relative weighting is used it helps to
normalize the metrics in some way. The maximum value for
the Degree metric can be found by removing all of the items
from the simulation and calculating the degree. There is no
simple calculation to find the diversity bound, however, an
upper bound can be found via optimization. The diversity
metric is very cheap to compute (relative to Degree, etc),
an optimization for only diversity can be performed first,
to find the upper bound on diversity. Both degree and
diversity are non-linear functions, this is okay and could
give desirable results when performing a scalarized opti-
mization, but it would still be challenging to find objective
weights [8].

1.3.2 Pareto Front Optimization

This method essentially finds a set of points (non-dominated
points) that are optimal trade-offs between a set of objec-
tives. The issue with using a Pareto Optimal Front method
is that the computation of diversity between the members is
non-trivial. Diversity is a measure of the distance between
points in the Pareto front. It is not clear how to accomplish
this without introducing a large number of parameters. Pos-
sibly, two different objectives could be chosen to optimize
with respect to, but those objectives are only proxies for
diversity and could be very similar producing results with
minimal dissimilarity.

1.3.3 Hierarchical Optimization

With hierarchical optimization an ordering and objective
specific thresholds are used, instead of only relative weights.
The objectives are optimized in the order given. Each ob-
jective is optimized to find its optimum and from this a
constraint is added to the optimization for the next objective.
This constraint adds a penalty whenever the previous objec-
tive(s) value goes below the threshold value(s). This gives
more control over the trade-offs between objectives. This
method works well and converges quickly, as can be seen in
Fig. 1. In this experiment we optimized art-gallery B in Fig. 6
with a diversity set of size 5. This optimization completed in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 3

a few seconds and converged before the optimization was
terminated.

Diversity Optimization Convergence for 5 Members

— member: 0 —— member: 3|
— member: 1 — member: 4 (]
— member: 2 1

o 5 10 15 20 25 30 35 20

Fig. 1. Diversity optimization convergence

1.4 Critical Resolution

The grid resolution determines the number of vertices in the
visibility graph, to identify the minimum resolution needed
we perform a sensitivity analysis over the granularity. Each
metric is computed over a range of grid resolutions, aggre-
gated over multiple environment layouts. Here, resolution
is represented as the number of cells per meter ratio, for
example resolution 0.5 means that in each dimension one
cell covers 2 square meters. The study results are illustrated
in Fig. 2. These diagrams show that the metrics do not
substantially change after a certain sampling frequency,
suggesting that a critical value can be identified. The two
jumps in the depth and entropy diagrams are caused by
discovering new bottlenecks after a certain increase in res-
olution, which are discarded at higher sampling frequency.
For the remaining experiments reported in this paper, we
have used a sampling resolution of 0.5 cells/meter?.

1.5 Additional Iterative User-In-The-Loop Results

We demonstrate an additional application of IDOME
on a real-world environment, namely a portion of the
NYC Penn Station subway. The user-in-the-loop approach
affords an iterative design process, where a user may
initially set up the problem by defining the movable
elements, and the Region of Query and Region of Reference.
Upon selecting a suitable revision to the layout from a
set of diverse exploration candidates provided by the
system, the user may modify the problem formulation.
Fig. 3 illustrates results from three iterations. By adding
additional parameters or changing the regions in an effort
the user can resolve issues that may have been identified
over the course of previous optimization rounds. In this
example, the user iteratively includes new query regions for
the stairwell and elevators to account for additional aspects
of the layout. What appear as minor alterations to the wall
configuration in the subway increase the objective from 6.3
to 11.68 leading to a design that significantly improves the
pedestrian environment. (Additional information on this

Critical Resolution Analysis

10 T T T
\ p— — — —
0 *) Mean Degree
Mean Depth
10 | | | | Mean Entropy
0 0.5 1 15 2 25 3
10

Expected Value

5 I I I I I
0 0.5 1 15 2 25 3

Cell per Meter Ratio

Fig. 2. Sensitivity of metric values to visibility graph resolution. The ver-
tical axis is the metric average over 10 randomly sampled environments.
The standard deviation is also provided for each metric.

study is available in the accompanying video.)

1.6 Expert Usefulness Results
1.6.1 Preferences

To facilitate the understanding and perception of results of
the art gallery study we render DOME designs in 3D and
show a common viewpoint from which several interesting
patterns can be seen. This is shown in Figure 4. Additionally,
we solicit feedback from six expert architects via a design
preference survey. The results show that all experts prefer
IDOME results over the default environment design.

1.6.2 Usefulness

This study involved three architects from three different
firms. The participants self-reported as male-identified with
one in the range of 35 — 44 and the others as 25 — 34 years
of age. All participants have a Master of Architecture degree
from accredited universities. The answers to expertise ques-
tions relevant to both general expertise and IDOME-specific
expertise can be found in Figure 5.

The expert usefulness survey was constructed to elicit
the opinions of expert directly and indirectly about the
IDOME approach. It is important to note that neutral results
came largely from the prototype interface used in the study.

REFERENCES

[1] A.-T.Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based
optimization methods applied to building performance analysis,”
Applied Energy, vol. 113, no. Supplement C, pp. 1043 — 1058,
2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0306261913007058

[2] T. Feng, L-F Yu, S-K. Yeung, K. Yin, and K. Zhou,
“Crowd-driven mid-scale layout design,” ACM Trans. Graph.,
vol. 35, no. 4, pp. 132:1-132:14, Jul. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2897824.2925894

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 4

ar

(a) Initial: 6.33

!

) |

(b) Round 1: 7.21

(d) Round 3: 11.68

Fig. 3. Optimization of Penn Station, NYC. This figure illustrates how the framework can be used on a large complex environment of ~ 10,000
vertices. Additional Region of Query are incrementally added, to resolve issues in the layout that were identified during the previous design
optimization rounds. The light grey area is the Region of Reference. The heat map areas are Region of Query with significant changes outlined in
brown rectangles. The dashed cyan lines show the structure of interest that was optimized between each round. The green boxes highlight the new
areas of interest that were considered during the optimization round. Round 1(a-b) regions are chosen to increase the accessibility and visibility of
subway platform access. Round 2(c) regions are chosen to increase the accessibility and visibility of exits. Round 3(d) the placement of washrooms
and elevators are improved by making them more viewable and accessible from additional areas in the environment. (Additional information on this
study is available in the accompanying video.)

(3]

(4]

(5]

O. Krause, D. R. Arbones, and C. “Cma-es with
optimal covariance update and storage complexity,” in
Advances in Neural Information Processing Systems 29,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I Guyon,
and R. Garnett, Eds. Curran Associates, Inc.,, 2016,

pp. 370-378. [Online]. Available: http://papers.nips.cc/paper/

Igel,

(6]

(7]

6457-cma-es-with-optimal-covariance-update-and-storage-complexity.

pdf

C. L. Mller and I. F. Sbalzarini, “Gaussian adaptation as a unifying
framework for continuous black-box optimization and adaptive
monte carlo sampling,” in IEEE Congress on Evolutionary Compu-
tation, July 2010, pp. 1-8.

E. Milgo, N. Ronoh, P. Waiganjo, and B. Manderick, “Adaptiveness
of cma based samplers,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’17.
New York, NY, USA: ACM, 2017, pp. 179-180. [Online]. Available:
http:/ /doi.acm.org/10.1145/3067695.3075611

(8]

R. T. Marler and J. S. Arora, ”Survey of multi-objective optimization
methods for engineering,” Structural and Multidisciplinary
Optimization, vol. 26, no. 6, pp. 369-395, 2004. [Online].
Available: http //dx.doi.org/10.1007 /s00158-003-0368-6

T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-,
and indicator-based methods in many-objective optimization,” in
Evolutionary multi-criterion optimization. —Springer, 2007, pp. 742-
756.

Y. Ding, S. Gregov, O. Grodzevich, I. Halevy, Z. Kavazovic, O. Ro-
manko, T. Seeman, R. Shioda, and F. Youbissi, “Discussions on
normalization and other topics in multiobjective optimization,” in
Fields-MITACS, Fields Industrial Problem Solving Workshop, 2006.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### ####

‘paulsjaid se pajeubisap Ajuspuadspul sjosliyose Ladxs xis jeyl subissp
ay} Ayuapi s(,) 8yl -alebineu o) Ases pue ‘9|qissadde ‘uado Buiaq subisap | jo 1S8q ay} Sedueeq Jeyl Jaquisw e si (}) "sazis Aiajieb Buisealoul ajiym suoisiosp yred saonpai Ajurew Jey} Jaquisw e si
(8) "a|qIssaooe Alenonued Buieq pue JopLIOD 8yl UMOP Jayliny suoisioap yied jo Jaquinu ay} Buionpas ajiym (q) wouy ANIqISIA 8yl sedueleq 1ey Jaquiaw e si (p) "suqiyxa JejnanJed Jo AljIgisiA 8yl yum
(q) Jo Aujqisia JopuIod 8y} Sedueleq Jeyl Jaquiaw B S| (9) *Aig|eb ay} Jo JoplIod ayl umop AlIGISIA |[BJISAO 8y} pue adkeds Jooj) 8y} dn suado jey} Jaquiaw B S| (q) "JUSWUOIIAUS 8y} JO uoiezuisweled
Jenoied e oy waisAs JNOAI Yyl Aq papiaoid siaquisw AlsiaAlp ayl moys (1) - (q) suwnjod ayy Ais|eb ue syl jo ubisep [eulblo ayl si (B) uwnjo) ‘ubisap yoes jo Alaiius ay) Jano dewiesy e se
SaN|eA J1}dW PauIquod 8y} SMOYs sainbly Jo Mol [euly 8y "MoJ do} Sy} Ul UMOYS JUIOdMSIA SU} WO} JUSWUOIIAUS PaIdpual 8y} SMoys sainbiy jo moJd a|ppiw ay| "eluabew ul umoys julodmala Jenoijied
e yum A1a|eb ue ay} Joy subisap |lem 8yl jo udan|q syl smoys sainbiy jo mos dol ay] "sarepipued [ewndo Jesu asianlp Buirey jo ssauingasn ayl BulAydwexs pue Ais|eb ue ue Buiziwundo ¢ ‘B4

() «(9) «(P) ©) @ (®)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### ####

5 EP1 mP2 mP3
4
3
2
1
0
How would you rate How would you rate How would you rate Do you have any prior Do you have any prior
your knowledge and your prior experience your prior experience understanding of understanding of
ability to interpret with architectural or in urban planning and space-syntax pedestrian movement
architectural or interior designs design? measures such as flow or crowd flow?
interior designs? Visibility, Accessibility
and Organization of
space?

Fig. 5. Results for the expertise focused demographics questions for the expert usefulness participants (P1-P3).

