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Abstract

The layout of a building, real or virtual, af-
fects the flow patterns of its intended users. It
is well established, for example, that the place-
ment of pillars at proper locations can often fa-
cilitate pedestrian flow during the evacuation of
a building. Such considerations are therefore
important for architects, game level developers,
and others whose domains involve agents navi-
gating through buildings. In this paper, we take
the first steps towards developing a simulation
framework that can be used to study the opti-
mal placement of architectural elements, such
as pillars or doors, for the purposes of facilitat-
ing dense pedestrian flow during the evacuation
of a building. In particular, we show that the
steering algorithms used to model the local nav-
igation abilities of the agents significantly affect
the results, which motivates the need for a sta-
tistically valid approach and further study.
Keywords: Crowd simulation, Optimization
and Analysis

1 Introduction

Architects produce functional pieces of art
through the planning, design and construction
of buildings. Humans and, in the near future,
robots explore, interact with and engage these
environments and those who participate in them.
It is of interest to the architecture, robotics, ur-
ban simulation, game development and other
communities to explore the configuration space
of environmental elements for a variety of rea-
sons and applications. For example, the ele-
ments that are present in an environment affect
the flow of people during an emergency evacua-
tion.

It is generally impractical for human experts
to exhaustively search the entire space of envi-
ronment configurations in order to select an en-
vironment layout that meets application-specific
criteria. Thus, there is a growing practical rel-
evance for computational approaches that can
comprehensively analyze the space of all pos-
sible configurations of an environment and au-
tomatically derive optimal designs that satisfy



Figure 1: Snapshots in raster order of two similar scenarios where two groups of agents travel in
opposite directions in a hallway. Placing four pillars at optimal locations (bottom) improves
on average the flow for both groups compared to the case without pillars (top).

user-defined objectives.
In this paper, we propose a computational

framework for studying the configuration of ar-
chitectural elements such as pillars or doors for
optimizing dense pedestrian flow during build-
ing evacuations. Our goal is to understand the
complexity of the problem by systematically
evaluating variations of key factors in the sim-
ulation pipeline that influence the results.

In particular, we study the effect of lo-
cal collision avoidance strategies (steering) on
crowd flow patterns on representative evacua-
tion benchmarks. We use three different steering
algorithms for this study, which include physi-
cally based models and optimal reciprocal meth-
ods. The benchmarks include variations on the
number and placement of pillars, exit door sizes,
as well as corridor and crowd flow configura-
tions (uni-, bi- and four-directional flows were
studied).

Our findings reveal that the choice of steering
algorithm significantly affects the results. We
also observe that placing one to four pillars often
improves the flow of the crowd as is shown in
Figure 1. In summary, our observations prompt
the need for a statistically valid approach and
further study.

The rest of the paper is organized as follows.
Section 2 provides a brief overview of related
work. Section 3 describes how we define and pa-
rameterize our domain. In Section 4 we present
our optimization formulation, we describe our
benchmarks in detail in Section 5, and in Sec-
tion 6 we discuss our results.

2 Related Work

Crowd Evaluation. There has been a growing
recent trend using statistical investigation in the

evaluation and analysis of crowd simulations.
[1] adopts a data-driven approach of evaluating
crowds by measuring its similarity to real world
data. [2] proposes a compact suite of manually
defined test cases that represent different steer-
ing challenges and a rich set of derived metrics
that provide an empirical measure of the per-
formance of an algorithm. Recent extensions
such as [3] propose a representative sampling
of challenging scenarios that agents encounter in
crowds to compute the coverage of the algorithm
and the quality of the simulations produced.
Density measures [1] and fundamental diagram-
based comparisons [4] use aggregate metrics for
quantifying similarity. The work in [5, 6] mea-
sures the ability of a steering algorithm to em-
ulate the behaviour of a real crowd dataset by
measuring its divergence from ground truth. [7]
presents a histogram-based technique to quan-
tify the global flow characteristics of crowds.
Perceptual studies rely on human factors exper-
iments to measure the variety in appearance and
motion [8], or perceptual fidelity of relaxing col-
lisions [9] in crowds.
Optimizing Crowd Simulation Parameters.
Researchers [6, 10, 11, 12] have observed that
the selection of a steering algorithm’s parame-
ters can dramatically influence the performance
and behavioural patterns of the aggregate crowd
dynamics. The work in [13, 14] proposes so-
lutions for automatically fitting a steering algo-
rithm’s parameters to minimize collisions, min-
imize evacuation times, or match recorded data.
However, there is little work that studies the im-
pact of environmental parameters on crowd flow
patterns, which is the main focus of this work.
Game Level Optimization. The work in [15,
16] use evolutionary approaches for procedu-
ral level creation and the placement of game
level design elements. [17] optimizes platformer



games to maximize “fun”. [14] proposes a new
method to improve the behaviour of crowd sim-
ulations using combinations of objectives. [18]
uses optimization to find interesting variations in
the game level, while [19] searched for optimal
play space configurations for platformer games.
[20] formulates a parameterization of the game
level and evaluates each game level’s expected
difficulty.
Architectural optimization. The works in [21,
22] studies the optimal placement of pillars
for specific evacuation scenarios using a single
steering algorithm. In contrast, we take a step
back and systematically observe the sensitivity
of steering algorithms and its parameters, and
the parameters of environment elements (e.g.,
pillar shape) on the optimization results as well
as evaluating additional environments.

3 Scenario Configuration Space

A scenario s, is a specific configuration of obsta-
cles and agents in an environment. A scenario
may refer to the starting layout of obstacles and
agents, or to an intermediate snapshot of a dy-
namic simulation. More formally we define a
scenario, similar to [23], as s = 〈O,A〉, where
O, A are the sets of static obstacles and agents
in the scenario. An obstacle o∈O at a particular
position in the environment (xo) can be either a
rectangular bounding box or a cylindrical pillar.
An agent a ∈ A is defined as a = 〈x,r,g〉, where
x is the current position, r is the collision radius,
and g is the goal position of the agent.

Allowing a few or all of the parameters of a
scenario, s, to range between finite or infinite
bounds defines a configuration space for the sce-
nario that we refer to as scenario subspace, Ssub,
from which we can draw arbitrary samples. In
this work we focus on the crowd flow of agents
through corridors or during a building evacua-
tion, and we construct our subspaces as follows.
We first define a set of agent regions, within
which we can randomly distribute agents, usu-
ally based on uniform sampling. The goal re-
gion and/or the desired velocity of each agent is
set to a region or a direction that effects desired
interactions with the other group(s) of agents,
and obstacles of interest. An obstacle region is
placed at a location of interest. For example, we

often set obstacle regions near doors or in the
middle section of a corridor. Specific examples
can be seen in the Sections 5 and 6. For nota-
tion reasons, we indicate the parameters that the
optimization can change to improve an objective
as p, and the associated bounds (constraints) on
these parameters as P .

3.1 Crowd Flow

There are a number of proposed measures to
characterize the flow of a crowd [24, 25]. We
define crowd flow as the ratio of the number of
agents that successfully reached their destina-
tion |Ac| to the average agent completion time
tavg. Crowd flow for a specific parameterization
of a scenario is computed as:

f (p) =
|Ac|
tavg

, tavg =

∑
a∈A

ta

|A|
, (1)

where ta is the simulated time that the agent a
needed to complete the simulation, otherwise a
scenario specific upper limit, A is the set of all
agents, and |A| indicates the cardinality of set A.
The parameters p are used to construct the sce-
nario configuration, which affects the simulation
time ta of each agent. An agent has completed a
simulation if the agent reaches its target location
before the simulation terminates, Ac is the set of
completed agents.

Given a reference or default parameterization
pd of the subspace, we can define the relative
crowd flow as:

fr(p) = f (p)− f (pd). (2)

The sign of the relative flow reveals immediately
if parameterization p improves crowd flow over
the reference one. For our experiments the refer-
ence flow corresponds to the case where no pil-
lars are present.

4 Optimization Formulation

Given a scenario subspace, Ssub, a set of free pa-
rameters, p, and their bounds (constraints), P ,
we set up and solve a minimization problem to
fit the parameters to an objective as follows:

p∗ = arg min
p∈P

(− fr(p)+g(p)). (3)



4.1 Objective Function

Our objective formulation consists of two terms:
the opposite of the relative flow term, fr(p), de-
fined in Equation 2, and a penalty term, g(p),
which penalizes the violation of the constraints
on the parameters. The reason for including
a penalty term is because the method used to
solve the problem, like many optimization meth-
ods, prefers constraints modelled using penalty
terms rather than hard constraints. Intuitively,
penalty methods allow the optimization pro-
cess to compute smoother derivatives which of-
ten improves the rate of convergence. For in-
dependent scalar parameters, the penalty func-
tion(s) can be formulated by the optimization
method directly. However, in our case, the pa-
rameter vector contains the location of multi-
ple obstacles, we need to explicitly enforce non-
overlapping constraints in the placement of ob-
stacles.

Overlap penalty term. Let ov(o1,o2) be the
area of the overlapping regions of two obstacles,
o1,o2 or zero if the obstacles do not overlap. We
define a penalty term for all pairs of overlapping
obstacles as follows:

g(p) = ∑
∀(o1,o2)∈O×O

gov(o1,o2), (4)

where

gov(o1,o2) = (ov(o1,o2)+1)(1− fr(p)))2,
(5)

for distinct obstacles, o1,o2, whose overlapping
area, ov(o1,o2), is non zero and 0 in all other
cases.

4.2 The CMA-ES algorithm

For most scenarios of interest our minimization
formulation results in a non-convex problem
that we solve with the Covariance Matrix Adap-
tation Evolutionary Strategy [26]. The CMA-ES
algorithm is well suited to this domain for many
reasons: it is straightforward to implement, it
can handle ill-conditioned objectives with noise
and it is very competitive in converging to an
optimal value in few iterations.

4.3 The Effect of Global Navigation

The aggregate dynamics of simulated crowds
are governed by decision-making at two levels:
(a) Global Navigation: selecting the next target
location in space to steer towards, and (b) Local
Collision Avoidance: steering towards the next
target while avoiding obstacles and other mov-
ing agents.

The global navigation decision dictates local
collision avoidance targets, producing a signifi-
cant impact on the resulting flow patterns pro-
duced depending on the decisions that agents
make. There are many computational methods
for solving the global navigation problem in-
cluding grid, interval, mesh, field, and sampling
based approaches, each with their own varia-
tions and parameters suited for different appli-
cations.

To demonstrate this effect, we used a grid-
based search method for global navigation. We
observe the following artifacts: (1) Jarring dis-
continuities in crowd flow due to the discretiza-
tion of the environment into spatial grid cells.
(2) Crowd congestion since the static navigation
strategy does not account for dynamic agents
while selecting a navigation decision. These ar-
tifacts dilute the effects of the actual steering
strategy used.

In order to study the impact of local colli-
sion avoidance strategies on crowd flow, we mit-
igate/nullify the impact of global navigation on
flow by selecting the navigation decision as the
desired goal location as provided by the scenario
definition. Hence, the aggregate dynamics of
the crowd is dictated purely by the steering al-
gorithm.

A systematic study of the effect of global nav-
igation strategies on crowd flow, and the interre-
lation between local and global strategies is the
subject of future work.

5 Methodology

In this section we describe the steering algo-
rithms, the specific benchmarks, and the envi-
ronmental features that we consider in our study.
For all experiments, agents are represented by
disks with a radius of 0.2286 meters. We use this
radius as it gives us more realistic results and has
no negative affect on our simulation system.



5.1 Steering Algorithms

To study the effect of steering algorithms on the
results, we chose the following three established
steering algorithms that represent a range of dif-
ferent steering approaches: (a) ORCA: an ef-
ficient and widely used technique that uses re-
ciprocal velocity obstacles for collision avoid-
ance [27], (b) PPR: a hybrid approach that
uses rules to combine reactions, predictions, and
planning [28] similar to [29], and (c) SF: a vari-
ant of the social forces method for crowd simu-
lation [30]. For each algorithm we use the de-
fault parameters that are suggested by the algo-
rithm’s developers.

5.2 Benchmarks

We study crowd flow patterns using the above
steering algorithms on a variety of scenarios that
exercise uni-,bi- and four-directional flows, us-
ing different configurations of corridors, pillars
and exit doors.

5.2.1 Uni-directional Hallway

The configuration of this benchmark is shown in
Figure 2. A hundred agents are randomly placed
in a 12.5×4 m2 region (blue). Up to 4 pillars are
placed in the optimization region (grey). Each
agent has a target location in the goal region
(green) outside of the hallway. The distance be-
tween the closed boundaries of the optimization
and the crowd regions is 3.5 m.

Figure 2: Uni-directional hallway scenario.

5.2.2 Bi-directional Hallway

This benchmark is an extension of the previ-
ous one with two groups of agents, A and B,
travelling in opposite directions in the hallway,
Figure 3. Each group contains 50 agents that
are randomly placed in the corresponding blue
region of size 6.25× 4 m2. Up to 4 pillars
are placed in the 4× 4 m2 optimization region

(black). Each group must cross the optimization
region to reach its corresponding target region
(green).

Figure 3: Bi-directional-hallway scenario.

5.2.3 Two-way Egress

In this benchmark two groups of agents travel-
ling from opposite directions in a hallway must
exit the same door in the middle of the hallway,
Figure 4. The arrangement of the agents, and the
optimization region are identical to those of the
previous benchmarks. A door of size 1.3716 m
is in the middle of the 34 m hallway. The size
of the door is in accordance with local standard
building codes.

Figure 4: Two-way egress scenario.

5.2.4 Four-way Hallway

This is an extension of the previous bi-
directional hallway benchmark in all cardinal di-
rections, Figure 5. Four groups of 25 agents
each travel from opposite directions in two hall-
ways that share a 4× 4 m2 optimization region
(grey) in the centre. The agents are randomly
distributed in their corresponding region (blue)
and must reach their target region (green) across
the corresponding hallway.

These benchmarks are selected based on the
most common flow scenarios studied and cover
many real world situation. Although we do not
rigorously evaluate our method’s ability to gen-
eralize to any scenario, we suspect the method
has this property. This can be attributed to the
optimization algorithm’s robustness.



Figure 5: Four-way hallway scenario.

6 Experiments

We apply our methodology to variations of the
benchmarks described in the previous section
and discuss the results. As a proof of concept
and to motivate the rest of the experiments, we
first present an exhaustive characterization of
the optimization landscape for a single scenario.

6.1 Characterizing A Scenario Subspace

For this experiment we uniformly sample the
uni-directional hallway subspace with a single
pillar for all steering algorithms. The optimiza-
tion region in Figure 2 is uniformly sampled
at intervals of 2.5 cm, which produces 25,600
sample locations for the pillar. Figure 6 shows
the flow relative to the case where no pillars are
present (inverse of Equation 2 in the form of heat
maps for all three algorithms). Blue and red cor-
respond to high and low values of the relative
flow respectively.

It is compelling to see the significant differ-
ence in the optimization landscape for the three
algorithms. ORCA prefers the obstacle out of
the way of the exit, while PPR clearly benefits
from having an obstacle in the middle of the op-
timization region. It is also evident that SF has
the largest blue region. In some sense, SF is the
least sensitive to an obstacle that is not near the
exit.

We also found some complex behaviour with
respect to pillar geometry. The ORCA algo-
rithm had poor behaviour for circular pillars,
treating the pillar as if it was an agent, signifi-

Alg 0-p 1-p 2-p 3-p 4-p
Uni-directional hallway

ORCA 6.12 6.61 6.60 6.63 6.62
PPR 1.92 2.18 2.17 2.19 2.15
SF 4.43 4.48 4.51 4.89 4.57

Bi-directional hallway
ORCA 2.84 3.64 3.70 3.54 3.63
PPR 1.69 2.16 2.22 2.09 2.11
SF 3.34 3.80 3.57 3.65 3.93

Two-way egress
ORCA 0.80 1.53 1.59 1.71 1.93
PPR N/A
SF 4.29 4.62 4.36 4.48 4.36

Four-way hallway
ORCA 3.01 3.79 3.64 3.51 3.63
PPR N/A
SF 3.48 3.76 3.84 3.93 3.76

Table 1: The optimal crowd flow values, f (p),
for all experiments, where n-p means n
pillars.

cantly impeding the crowd flow. However, the
SF algorithm functioned much smoother with
round pillars. The use of round pillars for
the SF algorithm leads to tangential forces that
help agents slide around pillars, the axis-aligned
boxes did not have this property. Last, the PPR
algorithm was indifferent to the pillar geometry.

6.2 Uni-directional Hallway

Table 1 shows the crowd flow as defined in
Equation 1 for the optimal placement of one to
four pillars for all scenarios. The table includes
the case of zero pillars for reference. Looking
at the section of the table that corresponds to the
uni-directional hallway scenario, we can see that
for all steering algorithms the crowd flow im-
proves with the placement of pillars. Notably,
three pillars produces the highest crowd flow for
all three algorithms.

6.3 Bi-directional Hallway

Table 1 shows that for this scenario in almost all
cases the crowd flow improves with the place-
ment of pillars. ORCA and SF show improved
flow even with four pillars. In fact, SF achieves
the best flow with four pillars. PPR shows ap-



(a) ORCA (b) PPR (c) SF

Figure 6: Uniform sampling of the optimization region for the uni-directional-hallway scenario,
where blue indicates better flow. Clearly, the effect of the pillar differs per algorithm.

proximately 30% improvement with the optimal
placement of two pillars.

6.4 Two-way Egress

Table 1 shows that only ORCA benefits signif-
icantly from the placement of obstacles in the
scenario. The largest improvement for ORCA
is in the case of four pillars, for which crowd
flow surprisingly more than doubles. SF ben-
efits in all cases but only marginally, with the
largest benefit in the case of two pillars. PPR
had difficulties completing this benchmark real-
istically without global planning.

6.5 Four-way Hallway

Table 1 shows that PPR has a very difficult time
with this scenario. This is probably because the
algorithm tends to make agents wait when they
are unable to move in a range of forward direc-
tions. Because of this behaviour the four groups
seem to reach a deadlock in the middle of the
hallways. On the other hand ORCA and SF
both show improved crowd flow with the addi-
tion of pillars. ORCA seems to perform better
with one optimally placed pillar while SF with
three.

6.6 Flow Rate Optimization

We found the rate of convergence depended
not only on the steering algorithm but also the
benchmark. Convergence was the fastest for
the uni-directional hallway benchmark and the
slowest for the two-way egress. This may be
due to the change in flow direction the crowds
need to make which is not present in the other

benchmarks. We show the optimization pro-
cess for the SF algorithm on the four-way hall-
way benchmark with two pillars in Figure 7.
Comparing the convergence rates for each of the
steering algorithms shows that no particular al-
gorithm is easier or harder to optimize for all
benchmarks.

The placement of additional pillars followed
two patterns. In the case crowd flow was uni-
or bi-directional, additional pillars would be
aligned with the crowd flow. In other cases
the pillars were configured in arrangements that
avoid alignment with the crowd flow, such as,
diagonal to crowd flows or in a triangular pat-
tern.

Figure 7: A visualization of the parameter se-
lection process while optimizing the
SF steering algorithm for the four-way
hallway example with 2 pillars.

6.7 Agent Completion Histogram

It is valuable to examine the agent completion
rate over time. Figure 8 presents a histogram



analysis for the three steering algorithms, and
for the optimal placement of 0− 4 pillars for
three different benchmarks. Each histogram
shows the number of agents that reached their
goal within uniformly spaced windows of time.
The first row corresponds to ORCA and the uni-
directional hallway scenario. Of particular inter-
est is the case of 3 pillars, which seems to pro-
duce the best completion rate for all cases where
pillars are used. The middle row shows the re-
sults for SF and for the four-way hallway sce-
nario. The agent completion histogram for SF
appear consistent for any number of pillars. The
bottom row shows the histogram for PPR and
the bi-directional hallway scenario. In this case,
it suggests that the results change significantly
with the number of pillars.

6.8 Varying Door Size

To study the effect of doorway size on crowd
flow, we modify the two benchmarks that in-
clude doors and experiment with door openings
that are 1.5× and 2× the original size.

Uni-directional hallwa y Two-way egress

fl
o
w

door width multiplier

Figure 9: Optimal crowd flow for each algo-
rithm for a few of the scenarios with
larger size doors. Increasing door
width generally increases crowd flow.

As expected, increasing the doorway size
does improve the crowd flow for each of the
steering algorithms. The improvement is sig-
nificantly larger for the two-way egress sce-
nario than for the uni-directional hallway sce-
nario. SF surpasses ORCA in crowd flow for
the largest doorway size in the uni-directional
hallway scenario. For the two-way egress exam-
ple the crowd flow almost doubles for SF and
almost triples for ORCA. The significant effect
of adding just a single pillar for the ORCA al-
gorithm can also be seen from this data. What
we find from this is that the overall increase
in flow is highly dependent on the arrangement

of the door opening. It is more crucial to in-
crease door openings that are perpendicular to
the crowd flow.

7 Conclusion

We have presented a methodology to systemati-
cally study how the configuration of an environ-
ment impacts crowd flow. Our results reveal sev-
eral interesting insights, highlighting the sensi-
tivity of optimal environment configurations on
the choice of steering algorithm, as well as the
shape and number of environment elements such
as pillars.

We observe that in a majority of scenarios,
the optimal number of pillars was found to be 3.
Door widths had a significant impact on crowd
flow patterns, especially for bi-directional traf-
fic, which highlights the importance of selecting
the right door width depending on the expected
crowd interactions.

It is of particular consequence that the opti-
mal placement of obstacles varies with the steer-
ing algorithm. For applications involving virtual
humans, the environment can be optimized for
the steering algorithm used. For applications in-
volving the design of real buildings, however,
the community needs to first establish an algo-
rithm that models the steering behaviour of real
humans. This is an important open question and
the subject of future work.

Limitations. Our analysis is limited to homo-
geneous crowds and three specific algorithms. It
would be interesting to extend the analysis to in-
clude other steering methods, and agents with
diverse characteristics and behaviours.

We believe that this initial study motivates
the need for further, larger scale research in the
domain of environment optimization for crowd
simulation.
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