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Abstract—This paper describes using human creativity within
a gamified collaborative design framework to address the com-
plexity of predictive environment design. This framework is
predicated on gamifying crowd objectives and presenting en-
vironment design problems as puzzles. A usability study re-
veals that the framework is considered usable for the task.
Participants were asked to configure an environment puzzle to
reduce an important crowd metric, the total egress time. The
design task was constructed to be straightforward and uses a
simplified environment as a probe for understanding the utility of
gamification and the performance of collaboration. Single-player
and multiplayer designs outperformed both optimization and
expert-sourced designs of the same environment and multiplayer
designs further outperformed the single-player designs. Single-
player and multiplayer iterations followed linear and exponential
decrease trends in total egress time respectively. Our experiments
provide strong evidence towards an interesting novel approach
of crowdsourcing collaborative environment design.

Index Terms—Architectural Design, Crowd Simulation, Gam-
ification, Crowd Sourcing, Co-Design.

I. INTRODUCTION

Architectural design, from the layout of interior elements to
the structural spaces, is a complex problem with a vast solution
space that is difficult to navigate. Including crowd-awareness
in the design process guarantees that the search for solutions
is further complicated. Additionally, scenarios in which design
choices impact the people using them or are critical, such as
egress and evacuations, are difficult to predictively explore.
To address this problem space, synthetic crowds are used as
dynamic analytical resources [[1], [2]. Synthetic crowds afford
low-cost, large scale, and flexible testing of designs, which
enables optimization-based approaches that can automatically
produce solutions to said design problems. However, such
approaches are highly dependent on their fitness functions,
may miss or misinterpret useful solutions, and may distance
the designer and the end-user from the process. Work in
this field has sought user-in-the-loop automation processes to
alleviate the shortcomings of solely automated approaches.
These approaches typically utilize optimization or machine
learning algorithms to generate solutions based on varying
modes of user input [2], [3]. However, these approaches do
not directly handle multi-user design and do not facilitate co-
design or afford crowd-sourcing of designs.
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This paper presents an approach to gamify the process
of design exploration for crowd-aware environments in a
way that opens the process to a broader community. Our
approach replaces the designer-as-user in the aforementioned
area of research with the community and the designer as co-
operative sources of information. The focus of this paper is the
gamification of the process of crowdsourced design, but the
described system also affords co-design as an inherent feature
of this approach.

This game’s scoring mechanism is based on measures
derived from simulations of crowd movement in the environ-
ment. Instead of utilizing automated optimization processes the
players compete to produce better designs for a given crowd
simulation-based measure. The game also provides feedback
in the form of dynamic crowd simulation, agent path traces,
and statistical heatmaps. Players are provided tools to edit
designs within the constraints defined by the architect or
designer—making the core game mechanic a multi-solution
puzzle solving exercise. Additionally, players are given the
means to parametrize the crowds and explore their dynamics
in any given design.

To evaluate this gamified approach, this paper focuses on
the usefulness and usability of the system in this domain.
Participants are given a straightforward but difficult environ-
ment design task as a puzzle, then they are asked to select a
puzzle-type (in the form of a crowd configuration) and play in
either single or multiplayer modes. In the single player mode,
participants work alone to produce solutions to the puzzle
that minimize the total egress time for the given puzzle-type
while aiming to attain higher positions on the leader board (a
public high score list for the puzzle-type). In the multiplayer
mode, players collaborate by exchanging ideas in the form of
designs and analyses, and compete to attain high positions
on the leader board. Results from the single player mode
show that gamifying the process is useful in that participants
successfully decreased total egress time. Results from the
multiplayer mode show that competition and collaboration is
even more beneficial in that participants produced higher value
designs than single players. Comparative regression analyses
on design iterations and total egress times in both modes
reveals a linear relationship in the single player mode and
an exponential relationship in the multiplayer mode—further
solidifying the value of multiplayer play. Finally, the results
from a usability survey reveal a high degree of usability even
though participants had non-designer backgrounds.

II. RELATED WORK

In this section, we explore the intersection of architectural
design, crowd simulation, and the gamification of difficult
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problems. In particular, the issue of moving from manual
architectural design to automated and user-in-the-loop methods
for iteratively producing and evaluating design candidates is
the most relevant work in this area. The space of crowd
simulation and gamifying complex problems is explored in
the context of simulation, problem-solving, and training.

Commercial CAD solutions, such as Autodesk Revit and
Rhino3D, are de facto standards in the design of complex
3D structures and environments. More recently, interactive
commercial suites for exploring the behaviours of crowds,
groups, customers, and end-users in environments have been
deployed, such as Pedestrian Dynamics®and MassMotion.

Research efforts have focused on the automatic and user-in-
the-loop generation of optimal architectural design solutions
with respect to design criteria [4]], [S], [6]], [7]. Furthermore, an
active area of research has been utilizing crowd simulation as a
dynamic source for human-centric design criteria and objective
analysis [1], [2]. Work has also shown that the user-in-the-
loop approach can be made real-time and highly interactive
by training neural networks to statically estimate crowd flow
in environments [3]]. Our work is inherently multi-designer,
multi-user, multi-player and directly supports collaboration.
Our work uses a real-time dynamic crowd simulation that is
highly parametrizable. A user may wish to test a large variety
of crowded scenarios, and our system allows for that directly.
This includes the ability to find and explore design issues
such as bottlenecks, laminar flow, corner bottlenecks, group
crossing, vortexes, etc which are not possible in a statically
estimated approach.

The usefulness of games, play, and gamification for edu-
cational purposes is well-established [8]. Furthermore, game-
based collaboration has been successfully deployed to crowd-
source solutions to design problems - from protein structures
to narratives [9], [LO], [11]], [12]]. Most related to our approach
are serious games utilizing crowd simulations in training,
planning, and evaluating emergency evacuation plans [13].
These games differ from our approach, in that, they are
egocentric (first-person) evacuation training and evaluation
games, while ours is an omniscient (knowing of all persons
in the scenario) crowd-sourced and collaborative environment
design model.

This work is a significant extension of the previously ac-
cepted short paper publication [[14]]. We propose harnessing the
power of crowd-sourcing in environment design as a means to
address the complexity of predictively designing for dynamic
scenarios such as egress. We show the value of gamifying
crowd simulation-based objectives and of multiplayer play as
a high-value design modality. This is accomplished through a
large crowd-sourced user study with hundreds of participants,
an extensive comparative regression analyses on single-player
and multiplayer performance, discussion of differences in
findings between single-player and multiplayer modes, and a
usability study showing a high degree of usability for this
approach.

III. PROPOSED FRAMEWORK

Our framework aims to provide an interactive collaborative
platform for architectural and urban design in the form of

an online, multiplayer game. By providing the game via the
internet, design solutions may be crowdsourced. By utilizing
state-of-the-art crowd simulation the solutions may be crowd-
aware, or predictive of particular types of crowds or events.
The rest of this section describes the proposed framework in
detail.

Our framework is predicated on facilitating the following
functions: co-design between architects and players (commu-
nity members, colleagues, or the public); multiplayer collabo-
ration and competition; and the crowdsourcing of environment
designs. This approach is driven by two distinct cycles of
collaboration and design, as seen in Figure [T}

A high-frequency cycle of collaboration and competition
between players generates new high-value designs as seen
expanded on the right side of Figure Crowd simula-
tion is utilized in a gamified design tool for environments.
Parametrized crowd simulations are a criterion for objective
quantitative analysis of scenarios.

A low-frequency cycle of co-design facilitates collaboration
between the player community and the designer or stakehold-
ers. This facilitates the uptake of new designs provided by
the community, as seen on the left side of Figure This
portion of the framework affords the designer or stakeholders
the ability to generate problem starting points, new puzzles,
or constraints.

The following subsections delineate the modules which
make up the framework of the game system.

A. Crowd Simulation

The crowd simulation system utilized is based on a
modified version of Optimal Reciprocal Collision Avoid-
ance (ORCA) [[15]], a successor of reciprocal velocity obsta-
cles. Global navigation is handled using navigation meshes
(NavMesh) for the walkable area representation with A*
search for global path planning [16]. Navigation meshes
are recomputed after every environment change during play.
The Unity® Mecanim system, in tandem with a modified
version of the ADAPT system [17)], handles animation of
each bipedal humanoid character model. Additionally, ORCA
has been shown to produce generalizable results in crowd-
based environment optimization and reproduce “human-like”
fundamental diagrams in common egress scenarios [1]].

The agents’ initial positions in the simulations are dis-
tributed either randomly or based on parameters or regions set
by the designer. The destinations of the agents are predicated
on the scenario set by the designer (such as choosing egress
points) or they may be generated randomly. A simulation ends
successfully once all agents have reached their goals. If an
agent does not complete its goal, the scenario is considered
incomplete (the player has not provided a viable solution to
the puzzle). Thus, design solutions must be traversable by all
agents to be submitted and scored.

Crowd behaviours may be modified by choosing aggression,
heterogeneity, and density quality levels. These three traits
modify the instantiation parameters of crowd agents—desired
velocity/acceleration, size, and density. In particular, these
values are important in heterogeneous crowd perception and
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Fig. 1: Framework Overview. To the left, tools facilitate the design and review of environments both on the designer end and
the player end. This section facilitates a lower frequency cycle of co-design. To the right, a crowd analysis and animation suite
afford the configuration, simulation, and analysis of egress scenarios core to the game’s objective. This section expands on
the high-frequency cycle the players participate in to produce designs, and highlights the iterations they make after joining a

particular puzzle-type..
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Fig. 2: Level of Service (LoS) categories and their respective
crowd density range mappings, where density is measured in
agents/m?. Using LoS grades instead of continuous values,
like the levels for homogeneity and aggression, is intended to
reduce the gulf of understanding for non-expert players.

outcomes. Three levels of aggression (LoA) are available: low,
medium, and high. This quality controls the distribution of
speed and acceleration of agents. Three levels of heterogeneity
(LoH) are available: low, medium, and high. This quality
controls the distribution of the radii, heights, and masses of the
agents. This allows the simulation to represent the diversity of
body types in a crowd. There are six crowd densities available
to the player. LoA and LoH are based on common crowd
heterogeneity and aggression proxies across the particle-based
synthetic crowds and crowds analysis literature (desired ve-
locity & particle radii) [18]]. These are presented in terms of
Levels of Service (LoS), since continuous density may not be
intuitive to the average player. LoS map a label (A-F) to a
range of crowd density capacities in terms of flow rate (0.27
- 2.17 agents/m?), as seen in Figure [2| Here we invert the
original definition of LoS to be a function of density in the
crowd rather than the capacity of the environment because we
sample the initial conditions over the entire scenario (assuming
higher density produces lower quality egress) [19].

The aforementioned categorical qualities of agent behaviour
map to underlying parameters for the steering model. For each
agent in the crowd, each one of these underlying parameters is
sampled from a normal distribution based on the selected cate-

gorical level for each quality. That is, each category determines
the value of p and o for the distribution of each parameter’s
explicit values amongst the agents. For example, LoA controls
the underlying desired speed (v4) and desired acceleration
(ag) parameter values for each agent. With the categorical
setting LoA: Low, the parameters are set at approximate
normative human walking values, so vq = 1.33m/s+0.5m/s
and ag = 0.68m/s* 4+ 0.3m/s?> sampled for each agent.
Together, these categorical levels are LoS: A-F, LoA: Low,
Medium, High, and LoH: Low, Medium, High-making for
a total of 54 combinations. Each combination is considered
a puzzle-type for a given environment in the game, since
unnormalized crowd objective metrics are not comparable
across densities and low densities often have broader solution
spaces. Effectively, each of the possible crowd configurations
has a leader board in the game.

B. Game Mechanics

Players (community members, colleagues, or the public)
drive an iterative refinement process of a given design problem.
This module provides tools for modifying elements of an
environment design such as walls, pillars, and doorways,
subject to the constraints imposed by the designer. These
tools are provided in a puzzle move like format, in which,
players may select a particular puzzle move and apply it to
the environment. Puzzle moves include add, delete, move, or
rotate for pieces such as doors, walls, or pillars.

The primary scoring mechanism of the game is crowd
objective metrics. In this paper, total egress time has been
used as a proxy for score. However, any computable crowd
objective metric is possible, such as flow rate, effort, collisions,
path length, etc. These scores are presented amongst players
as leader boards (high scores) for different scenarios (crowd
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parametrizations and environments). After a simulation has
completed successfully, the player may additionally review the
outcomes using several tools including: the crowd animation
itself, agent path traces, and heat maps of aggregate crowd
density.

The game is playable in two modes, single and multiplayer.
In both modes, a puzzle is a given environment design
problem. The players first decide a puzzle-type, or crowd
configuration, which relates to the difficulty of the puzzle (for
example, it is difficult to find good solutions for higher density
scenarios). This puzzle and puzzle-type combination has an
associated public leaderboard, or high scores list.

Single Player. In single player mode, a player will iterate
on the design by making puzzle moves and running analyses
while attempting to improve the design. When their design
is submitted the final score is registered and the player is
entered into the respective position on the leader board. In the
multiplayer mode, the player is provided the ability to share
and iteratively revise their own and other players’ designs and
analyses.

Multiplayer. In the multiplayer mode, a player iterates on
the current leading solution for the puzzle-type. When a
player submits their design for scoring, the score, design, and
analyses are made publicly accessible for that puzzle-type. In
this way players are always working on the best current design
and may draw from the pool of designs. A player can reinforce
their design decision by learning from their analyses, other
players’ analyses, and other players’ designs.

IV. MATERIALS AND METHODS

To facilitate the evaluation of the usefulness and usability of
the proposed gamification of crowd-aware environment design
and the game system, participants were asked to solve a
common but complex problem - emergency egress. In this
way, reducing the score is considered better and players
compete (in either single or multiplayer modes) to produce
progressively better designs for egress scenarios. Two studies
are conducted to explore player performance in the available
modes of play: single and multiplayer. Finally, the usability
of the system is evaluated using the well-established System
Usability Scale (SUS). This research was approved by the
University’s Research Ethics Board.

The game is provided as an online web-based Unity®
application. Participants were recruited and asked to play
the game by emailing various mailing lists. The mailing
lists included both undergraduate and graduate students. In-
structions for tasks and controls were provided in the game
menus accessible before and during play. After the participant
completed their session, they were asked to complete a survey
on system usability and redirected to an online form. Informed
consent was provided by all participants and data was collected
anonymously and stored securely.

Participants were provided with a basic layout, as seen in
the frame “Initial Design” of Figure [I] There were several
constraints associated with each element in the layout for this
study. First, the static elements of the layout, provided when
the game starts, may not be removed or moved - particularly

LoS | LoA | LoH E ‘ o ‘ Ep op
A Low Low 9.29 0.12 11.29 1.63
C Low Low 10.53 0.39 12.49 0.79
C High Low 10.19 0.28 13.00 0.59
D Low Low 12.29 0.61 14.50 0.65
E High High 13.64 0.73 15.90 0.65
F Low Low 15.73 0.63 17.18 0.71

TABLE I: The mean of total egress times F, in seconds,
with standard deviation o in the expert-designed environment,
and the mean total egress time E, with standard deviation
op in the CMA-ES optimized environments, for all crowd
configurations reported in the study. Each configuration is
simulated 10 times with different initial conditions. Note that
there are 54 total possible combinations, these 6 are those
which participants chose to play.

the bounding and structural walls. There were a fixed number
of available additional elements such as walls (2), pillars (1),
and doorways (6) that must be placed by the participant. Walls
could only be placed if they formed an enclosed space. For
these experiments, partial dividers were considered invalid, but
participants could place a wall and then place a door on that
wall. A wall may not be made to pass through an outside,
or bounding, wall. All walls had a fixed width of 0.1m and a
height of 3m and must be equal to or greater than 2m in length.
Finally, all agents in the crowd simulation were required to
evacuate the environment - there must be paths to the exit
from everywhere in the environment.

Each participant was identified by a unique ID assigned
to them at the start of play. The data gathered included
Player ID, architectural element positions, total egress time of
the simulation, as well as the participants’ choices of crowd
configuration parameters (LoS, LoA, LoH), of viewing the
heat map, and of viewing the Top Scorer’s heat map.

A human design baseline, within the constrained parameters
for the required elements in the experimental environment, was
generated by an expert designer comfortable with the system,
as in Figure [I] Initial Design. Additionally, automated opti-
mization baselines were generated using Covariance Matrix
Adaptation-Evolutionary Strategy (CMA-ES) on the parame-
ter space of the puzzle [20]. For each crowd configuration
available in the study, the CMA-ES optimal designs and the
expert design were simulated ten times with randomized initial
agent configurations. Table [] shows the mean and standard
deviation of total egress times for the baselines. Examples of
these environments can be seen in Figure [3]

V. SINGLE PLAYER STUDY

This study hypothesizes that gamification of such a difficult
problem in environment design provides a non-expert player
with a means to improve their design and total egress time.
The total egress times of iterations completed by the players
were stored for analysis. This data serves as a comparison to
multiplayer and expert performance.

In the single-player mode, participants work on the puzzle,
or environment, under the given constraints for the puzzle-
type, or crowd parametrization, they choose at the beginning
of the session. In this mode, a participant may view their
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Fig. 3: Examples of environment layout designs from each of the experimental design source (a) the expert design (b) the
CMA-ES design for the LoS: E, LoA: High, LoH: High, scenario (c) a single player design for the LoS: A, LoA: Low,
LoH: Low scenario and (d) a multiplayer design for the LoS: C, LoA: Low, LoH: Low scenario. Note how (a-c) are somewhat
similar, likely an artefact of exploration by a singular source, and (b) has a non-useful room structure, an artefact of completely

automated design.

analyses, as described in Section [[TI-B] between each design
iteration. When the participant is satisfied, they may submit
their final design for scoring and placement on the public
leaderboards. This mode represents a typical single-player
mode common in many puzzle-like games, wherein players
work on solutions alone.

A. Analysis

A Kruskal-Wallis one-way analysis of variance was con-
ducted to compare the total egress times of the CMA-ES
optimal, expert scenario, and the final single-player authored
designs in each crowd configuration challenge. This was
followed by a Conover’s pairwise multiple comparison test
with both Bonferonni-Holm and False Discovery Rate (FDR)
corrections for ties. Comparative regression analysis helps to
further understand how participants performed when using the
game. The ordered set of iterations (independent variable) and
egress time (dependent variable) is regressed for three models:
linear (y = ax + b), exponential (y = ae’®), and logarithmic
(y = aln(z) + b). The slope, or curvature, sign (increasing[+],
decreasing [-]) parameter a (b for the exponential model) is of
particular interest. This parameter controls the rate and sign
of improvement over iterations (large values are faster rates
and negative values are decreasing total egress time).

B. Results

The summary statistics overall single-player iterations and
over final designs are reported in Table [lI} A box plot com-
parison of the median, IQR, and extrema of the CMAE-ES
optimal, expert design, and final multiplayer design mean total
egress times are shown in Figure ] There was a significant dif-
ference in the total egress times amongst the three conditions
for each crowd parametrization (p < 0.001). The post-hoc
tests revealed that for both crowd parametrizations the expert
and CMAE-ES optimal design was not significantly different,
while the single-player final designs are significantly different
from both other conditions (p < 0.01). The distributions of
relevant parameters, Pearson r2 values, and Mean Squared
Error (MSE) values, for all three models in the regression
analysis, are shown in Figure [3

LoS‘LoA‘LoH‘ \1\ \ \ \ of
A ‘LOW‘LOW‘ ‘ 330 ‘851‘ ‘720‘110
C | Low | Low 297 | 10.66 9.55 | 0.92

TABLE II: Summary statistics for the overall data in the single
player gamification dataset by crowd configuration. N is the
total number of participants for a given configuration; I is
the total number of iterations this group made; E* and ot are
mean of total egress times, in seconds, and standard deviation
of the total set; £/ and o/ are the mean of total egress times,
in seconds, and standard deviation of the final designs for each
player.
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Fig. 4: Box plot comparison of CMA-ES optimal designs
versus expert versus final mean total egress times for the
single player mode, showing the median, IQR, and extrema.
The player created designs show greater variance, but the total
egress time is reduced significantly.
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linear exponential logarithmic
y=ax+b y = aeb® y=aln(z) +b
a parameter b parameter a parameter
Pearson 72

Mean Squared Error

Fig. 5: Regression results over all single player design ses-
sions. Each participant’s ordered set of iterations (independent
variable) and total egress times (dependent variable) is fitted
for each model. The complete set of results is shown as Top
row: the distribution of fitted parameters, b for the exponential
model, a otherwise; Middle row: the distribution of Pearson
r2 values; and Bottom row: the distribution of Mean Squared
Error (MSE) values. The results favour the linear model in
terms of lower MSE with 72 values similar to the exponential
model.

C. Discussion

Regression analysis shows that individual participants fol-
low either an exponential or linear improvement in their
efforts to reduce total egress time. The distribution of Pearson
r2 values favours an exponential curve. However, while the
MSE values show a normal distribution about zero for both
linear and exponential models, the distribution of MSE favours
the linear model. Most importantly, all regression models
show a strong negative slope. This highlights the fact that
all participants are decreasing the egress time in their design
iterations.

VI. MULTIPLAYER STUDY

This study hypothesizes that the competitive and collabora-
tive processes found in multiplayer modes [[12] afford a more
comprehensive search of the solution space resulting in even
shorter total egress times (in comparison to both the expert
designs and single player designs). The total egress times of
crowd configurations for the groups of multiplayer participants
were stored for analysis.

In the multiplayer mode, participants work on the puzzle,
or environment, under the given constraints for the puzzle-
type, or crowd parametrization, they choose at the beginning
of their session. That is, each puzzle-type has a group of

6

LoS‘LoA‘LoH‘N‘ I \ Et ‘o‘t \ Ef ‘Emin

A | Low | Low | 9 |115] 7.17 | 2.14| 572 | 4.02

C | High | Low | 7 | 107 | 7.88 | 1.85| 6.52 | 5.06

D | Low | Low | 7 |107| 9.79 |2.37| 6.84 | 6.02

E | High | High | 7 | 107 | 12.68 | 2.98 | 9.90 | 8.50

F | Low | Low | 6 | 99 | 14.04|3.09 | 12.04 | 10.09
TABLE III: Summary statistics for the overall data in the

multiplayer gamification dataset by crowd configuration. [N
is the total number of participants for a given configuration; [
is the total number of iterations this group made; E* and o?
are mean total egress time, in seconds, and standard deviation
for the total set; E is the total egress time, in seconds, of the
final design; and E,,,;,, is the minimum, or fastest, total egress
time, in seconds.

fellow players all collaborating and competing for the top
position on that puzzle-type leaderboard. In this mode, a
participant may view both their analyses and those of the
current leaders for the particular puzzle-type, as described in
Section between each design iteration. The participants
have access to both the leading analyses and designs and may
use the current leading design as a starting point for their
own. In this way, the multiplayer mode is both collaborative,
players work on designs together, and competitive, players
are explicitly attempting to submit the highest value designs.
When participants are satisfied, they may submit their designs
and analyses for scoring, distribution, and placement on the
public leaderboards.

A. Analysis

The multiplayer mode culminates in a single final design
produced by the players for their puzzle-type. The best per-
forming expert scenario and the final multiplayer design total
egress times for each puzzle-type are compared. To further
understand how participants performed when using the game,
a comparative regression analysis study is carried out on the
multiplayer participant design iterations for each puzzle-type.
This parameter controls the rate and sign of improvement over
iterations (large values are faster rates and negative values are
decreasing total egress time).

B. Results

A scatter plot comparison of the CMA-ES optimal, expert,
and final mean total egress times are shown in Figure [6] The
summary statistics over all multiplayer iterations and final
designs are reported in Table The results for the compar-
ative regression analysis are reported in Table Examples
of interesting regression results from two multiplayer design
challenges are shown in Figure

C. Discussion

Regression analysis shows that participants iteratively de-
crease the egress time when collaboratively modifying their
environment configurations. The best-fitting, in terms of high
Pearson 2 and low MSE, are the exponential model across
all crowd configurations, except for the configuration LoS:
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Crowd Configurations|Linear Regression Summary|Exponential Regression Summary|Logarithmic Regression Summary
LoS|LoA| LoH a [r? MSE b r2 MSE a [r? MSE

A |Low| Low [-0.059]|0.86 0.63 -0.0085]0.88 0.55 -1.93]0.71 1.30

C |High| Low [-0.056|0.87 0.45 -0.0071]0.88 0.42 -1.72]0.75 0.85

D |[Low| Low [-0.072]|0.88 0.65 -0.0073]0.88 0.67 -2.08]0.67 1.85

E |High| High |[-0.088]0.84 1.38 -0.0071]0.87 1.19 -2.72|0.72 2.44

F |Low| Low [-0.093/0.74 2.48 -0.0070(0.79 2.02 -3.06|0.84 1.52

TABLE IV: Results of the regression analysis for the collaborative data set for all linear, exponential, and logarithmic
regressions: the parameters, b for the exponential model, a otherwise; the Pearson r2 values; and the Mean Squared Error

(MSE) are reported.
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Fig. 6: Comparison of expert and CMA-ES optimal design
minimum total egress time versus multiplayer final total egress
times for the multiplayer mode. These data are for the shortest
expert and optimal design total egress time out of ten sim-
ulations and the final collaborative design produced by the
multiplayer participants for each of the crowd configurations.

Count ‘ Mean ‘ Median ‘ Min ‘ Max ‘ o ‘ IOR
61 | 7869 | 80 | 70 | 925 | 884 | 75

TABLE V: Summary statistics for SUS results, where the score
range is from 0 to 100.

F, LoA: Low, LoH: Low as shown in Figure |ZKb). While all
design collaborations plateau near some solution, (b) shows
the most difficult challenge (the highest density egress) has a
high starting point and the plateau is longer and flatter. The
exponential regression captures the rapid improvement of the
scenario over iterations and the plateau near the end of the
collaborations as the players’ near an optimal layout—at which
point the scenario becomes difficult to improve significantly.

VII. USABILITY STUDY

Participants were asked to complete a System Usability
Scale (SUS) survey following their play sessions. In total, 61
players provided feedback in an online SUS survey. For ease of
use, SUS scores are scaled to a range between 0 and 100, with
scores above 68 considered “above average” and “acceptable”.
Our average usability score is 78.69 out of a scale of 100. The
summary statistics of the SUS scores are reported in Table [V]

A mapping of scaled SUS scores to common adjectives
provides an intuitive interpretation for each score range. The
results show that the 61 participants mean and median scores
fall within the adjective range of “good” and “excellent”,
which means that our game system is highly usable and
“learnable” with some degree of confidence.
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Fig. 7: Example regression analysis results (lines & curves)
for all functions over all design iterations for the a) LoS:
E, LoA: High, LoH: High and b) LoS: F, LoA: Low, LoH:
Low; multiplayer mode design iterations. Each data point is
colour coded by player for that particular puzzle-type. These
two puzzle types exemplify the extremes of the experiment
outcomes, a) shows an exemplary case where the iterations
plateau in an exponential fit, while b) shows the only crowd
configuration where the logarithmic fit is best because of the
difficulty in initially searching the solution space of high-
density scenarios.

20

VIII. CONCLUSION

This paper describes an online game that re-imagines
environment design problems as puzzle-solving games. To
understand the effectiveness of gamification in this domain,
comparative regression analyses show that single player and
multiplayer modes produce high-value environment designs.
The single player authored designs exceed the performance of
the expert-designed environment, and the multiplayer designs
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exceed single player and optimization strategy performance.
There is evidence that single players linearly improve total
egress times over design iterations. Furthermore, collaborating
players exponentially improve total egress times over design
iterations.

The game system utilizes an iterative approach to optimizing
the environment layout. Players drive this process with their
design actions and analyses. Players become contributors to
solutions for difficult problems. The results show that no
matter what mode the players play in (single or multiplayer),
they produce increasingly better designs.

Limitations The collaborative gaming approach is a tech-
nically greedy approach to optimization that may lead to
local minima. This is highly dependent on the collaboration
dynamics and the subjective value players give to solutions.
The limitations in our studies included a free choice of puzzle
types, or crowd parametrization, by players. Several of the 54
possible crowd configurations, or puzzle-types, were not se-
lected by the players—limiting our analyses to those populated
with data. However, this study provided ample evidence and
motivation to pursue this line of research. Additionally, the
study utilizes a simplified environment to reduce confounds
and focus on the gamification of the process. This keeps
the study and subsequent analysis tractable while easing the
learning curve for participants who are not experts in this
particular design space. Even seemingly simple crowd-driven
design is a complex and non-convex solution space of an
ill-conditioned problem, as small changes in parameters may
drastically change outcomes.

Future Work It is hypothesized that the presented findings
extend to more complex design problems. Future work will
look into the usefulness of the approach in more difficult de-
sign problems. There are several relevant aspects of the player
facing framework to explore. Extending the range of crowd
parametrizations would be beneficial in an industry setting,
but maybe less intuitive to non-expert gamers. We plan to
explore the correct way to deliver both useful and usable tools
to players. Additionally, the underlying steering model and
its parametrizations are a largely simplified particle model of
human movement and normative walking values respectively.
Using this in a design platform assumes environments will
be used by a specific subset of the population. This was
useful for a proof-of-concept, but future work will address
normativity as default in environment design especially where
design interventions and accessibility necessarily intersect.
The platform supports additional affordances which are left
to future work to explore. Primarily, co-design, in that design
stakeholders (architects, planners, government, institutions,
etc.) may access the processes, platforms, and people of
their community, potentially facilitating radically new ways
of working, collaborating, or learning in the architectural
domain. Finally, we plan for the exploration of the platform
as an educational or training tool in the space of architectural
design.
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