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Figure 1: Simulation of of social forces steering algorithm in a bi-directional hallway for different levels of service. Optimal pillar placements
produce emergent lanes and increase the effective critical density, thereby increasing the effective level of service at higher crowd densities.

Abstract

Level of service (LoS) is a standard indicator, widely used in crowd
management and urban design, for characterizing the service af-
forded by environments to crowds of specific densities. However,
current LoS indicators are qualitative and rely on expert analysis.
Computational approaches for crowd analysis and environment de-
sign require robust measures for characterizing the relationship be-
tween environments and crowd flow.

In this paper, the flow-density relationships of environments opti-
mized for flow under various LoS conditions are explored with re-
spect to three state-of-the-art steering algorithms. We optimize en-
vironment elements to maximize crowd flow under a range of den-
sity conditions corresponding to common LeoS categories. We per-
form an analysis of crowd flow under LoS conditions corresponding
to the LoS optimized environments. We then perform an analysis of
the crowd flow for these LoS optimized environments across LoS
conditions.

The steering algorithm, the number of optimized environment ele-
ments, the scenario configuration and the LoS conditions affect the
optimal configuration of environment elements. We observe that
the critical density of crowd simulators can increase, or shift LoS,
due to the optimal placement of pillars. Depending on the steering
model and environment benchmark, pillars are configured to pro-
duce lanes or form wall-like structures, in an effort to maximize
crowd flow. These experiments serve as a precursor to environment
optimization and crowd management motivating the need for fur-
ther study using real and synthetic crowd datasets across a larger
representation of environments.
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1 Introduction

The evaluation of pedestrian and agent-based crowd dynamics is of
importance to several communities including architectural design,
urban planning, computer graphics, and game design. Crowds of
varying densities exhibit a number of behaviours in different con-
texts. In particular, bottleneck and evacuation scenarios, in which
crowd members are compressed together through environmental
and contextual features, produce interesting aggregate behaviours.
For instance, panicked or evacuating crowds can produce turbulent
behaviours such as trampling or reduced-to-blocked flow scenar-
ios. Environment and level designers may attempt to characterize
and study these scenarios through a variety of means.

Traffic and pedestrian dynamics communities often use a standard
qualitative classification, Level of Service (LoS), to describe flow
relationships with respect to volume, or density, in an environment.
[Fruin 1971] provides the original descriptions of LoS definitions
for pedestrian environments. This classification system provides an
easy to use means of describing flow contexts based mainly on ob-
servations of typical crowd contexts. Using this system as a guide,
a designer can attempt to model key aspects of the environment to
meet a desired LoS. For example, a stairwell may be designed to ac-
commodate LoS C capacity conditions on average. Although LoS
can work well as a qualitative metric for the design and classifica-
tion of environments, it lacks empirical evidence that generalizes
across crowd types, contexts, and environment configurations.

Synthetic crowds can be simulated to extrapolate crowd flow for
rigorous quantitative analysis, but these may be at odds with the




qualitative LoS. In order to successfully use computer-assisted de-
sign, it is important to have sound quantitative metrics that can be
used as the basis for analysis and optimization. These should re-
late to the widely accepted LoS classification leading to effectively
chosen design parameters.

In this paper, we perform environment optimization experiments
across various LoS conditions using established agent-based crowd
simulation techniques. We explore optimal environment configura-
tions as they pertain to crowd densities and environmental contexts.
These experiments reveal a sensitivity of flow-density relationships
to local steering algorithms in optimal results. We show that LoS
conditions in different optimal contexts produce both agreeable and
disagreeable flow density relationships dependant on both the steer-
ing model and environment.

This paper makes the following contributions: An empirical study
of flow-density relationships for steering simulators and bench-
marks in the context of environment optimization. Our results
provide insight into how LoS classification differs across steer-
ing simulators in different evacuation contexts, therefore it is un-
clear whether there is a standard LoS characteristic across synthetic
crowd behaviours. This motivates the need for further experimen-
tation and field observations.

2 Related Work

Crowds exhibit interesting macroscopic effects depending on con-
text, particularly in high density situations. [Still 2007] reviews
the complexity and difficulty involved in the simulation of crowds
in these critical situations. However, the results of a large scale em-
pirical study presented in [Karamouzas et al. 2014] show a simple
power law describes real-world pedestrian interactions in a variety
of conditions.

2.1 Crowd Simulation

Crowd simulation through local steering began with the seminal
work [Reynolds 1987] describing the modelling of flocking and
grouping behaviours. Since, numerous approaches have proven
useful for solving the steering problem in a variety of contexts.
These approaches include: force-field based [Karamouzas et al.
2009; Helbing et al. 2000] which model interactions as physical
forces; geometrically-based [van den Berg et al. 2011; Guy et al.
2009] which decompose velocity-space and may include synthetic
perceptions [Ondfej et al. 2010]; and multi-phase [Singh et al.
2011] which integrate multiple steering models to generate a final
steering decision.

Approaches that take into account the nature of density and crowd
size have been developed as well. The simulation of large scale
dense crowds proposed in [Narain et al. 2009] is made possible by
decoupling local collision avoidance through introducing unilateral
incompressibility in the continuous domain. Generating realistic
crowd simulations based on relating the common speed/density re-
lationship of fundamental diagrams to dense simulated crowds was
proposed in [Narang et al. 2015; Best et al. 2014].

2.2 Crowd Dynamics and Evaluation

Crowd dynamics and traffic flow has a long and rich history. In par-
ticular, pedestrian traffic flow exhibits unique dynamics at different
densities which must be planned for, originally discussed in [Fruin
1971].

Evaluation of these dynamics and the correctness of their simu-
lations is of particular importance and has spawned different ap-

proaches to crowd analysis. Fundamental diagrams were used as
a measure of aggregate similarity in [Seyfried et al. 2010] which,
by performing a large empirical study, highlights the importance
and discrepancies arising from measurement. [Lerner et al. 2010;
Lerner et al. 2009] proposed measuring similarity to real world data
through a data-driven approach, highlighting the effects of density
under different contexts. [Singh et al. 2009] proposed simulation
of crowds over a series of challenging test cases using an extensible
set of evaluation metrics for measuring the performance of steer-
ing algorithms. This work was extended in [Kapadia et al. 2011] to
simulate crowds in a representative set of challenging test cases and
compute the coverage of a steering algorithm and resultant quality
of simulations.

2.3 Crowd and Environment Optimization

Recent work [Wolinski et al. 2014; Berseth et al. 2014b] has
demonstrated the potential of automatically fitting the parameters
of crowd simulation techniques to meet different performance cri-
teria, such as maximizing crowd flow.

Environment optimization spans multiple domains wherein a spe-
cific goal is related to the best parameters of the environment by
some criteria function. Most related to our work is the optimiza-
tion of crowd affecting environment parameters. Optimization of
features such as pillars has been studied in [Rodriguez et al. 2013;
Jiang et al. 2014] for a single steering algorithms. In [Berseth et al.
2014a], static path analysis was proposed to procedurally generate
difficulty optimal game level layouts. Recent literature shows that
choice of steering algorithm affects the output of environment opti-
mizations [Berseth et al. 2015].

Comparison to Prior Work. We complement prior work in crowd
simulation, evaluation, and optimization by examining the sensitiv-
ity of agent-based steering algorithms and optimization results with
respect to flow-density relationships in crowded environments.

3 Methodology

In this section we outline the concept of LoS, steering algorithms,
and specific environments used in the analysis.

3.1 Level of Service of Pedestrian Crowds

Levels of Service (LoS), as defined in [Fruin 1971], provides a clas-
sification of the objective LoS for pedestrians environments by as-
signing labels to crowd densities. These LoS classifications are pro-
vided for various types of pedestrian environments such as walk-
ways, queueing, and stairs. Here we are interested in walkways.
[Fruin 1971] provides the original measures and descriptions used
to classify LoS for pedestrian walkway environments.

3.2 Steering Algorithms

We perform our analysis using the following steering algorithms as
they represent a range of different local agent-based steering ap-
proaches in large crowd simulation: (a) ORCA: a reciprocal veloc-
ity obstacles based approach [van den Berg et al. 2011], (b) PPR: a
hybrid, rule based approach combining reactions, predictions, and
planning [Singh et al. 2011], and (c) SF: a social forces based ap-
proach [Helbing et al. 2000]. For each algorithm the default param-
eters, as suggested by the algorithm’s developers, are used.



3.3 Environment Configuration

The environment configuration refers to the starting arrangement
or design of obstacles and agents in and environment or level.
Formally we can define an environment configuration similar
to [Berseth et al. 2013], as s = (O, A), where O, A are the sets
of static obstacles and agents in the scenario respectively. For our
experiments, an obstacle o € O is either a cylindrical pillar or a
rectangular bounding box, but may be extended to arbitrary polyg-
onal objects. An agent a € A is defined as a = (x, 7, g), where
x is the current position, r is the collision radius, and g is the goal
position of the agent.

Our work focuses on the crowd flow of agents through corri-
dors during building evacuation w.r.t LoS crowd density conditions
(agents per square meter). We first define a set of agent regions,
within which we can randomly distribute agents based on uniform
sampling. Agent regions enforce the LoS crowd density conditions,
described above. The goal region and/or the desired velocity of
each agent is set to a region or a direction that effects desired inter-
actions with the other group(s) of agents, and obstacles of interest.

For all experiments, agents and pillar obstacles are represented by
disks with a radius of 0.23m corresponding to an average human
shoulder width. We study crowd flow in various crowd densities
conditions corresponding to known LoS described in [Fruin 1971].
These discrete crowd densities, used in the optimization experi-
ments of Section 4, are 0.2, 0.4, 0.6, 0.9 and 2 agents/m? for LoS
A, B, C, D and E respectively. For evaluation of LoS as it relates to
steering algorithms, we densely sample across a spectrum of crowd
densities ranging from LoS A-E.

Uni-directional Hallway Egress: In this configuration, 100 agents
are randomly placed in regions to accommodate crowd densi-
ties across our examined LoS. These regions correspond to LoS:
A (6m x 83.33m), B (6m x 41.66m), C (6m x 27.77m), D
(6m x 18.51m) and E (6m x 8.33m). Each agent has a target
location in the goal region outside of the hallway Fig. 2.
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Figure 2: Uni-directional hallway scenario.

Bi-directional Hallway: This configuration, as illustrated in Fig. 3
has two groups of agents travelling in opposite directions in the
hallway. There are 50 agents in each group placed in regions to
accommodate crowd densities across our examined LoS. These re-
gions correspond to LoS: A (6m x 41.66m), B (6m x 20.83m),
C (6m x 13.88m), D (6m x 9.25m) and E (6m x 4.16m). Each
agent has a target location in the goal region outside of the hallway.
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Figure 3: Bi-directional hallway scenario.

3.4 Crowd Flow

Crowd flow has been defined in a few of ways [Johansson et al.
2008; Helbing et al. 2007]. For our study, we define crowd flow as

the rate at which agents reaching their goal position:

_ 1Al
te

f(p) e =1t —to 1)

where ¢o and ¢; are the completion times for the first and last agents
to reach their goals respectively.

4 Optimizing Level of Service

Placing pillars at appropriate locations in an environment has been
shown to often improve crowd flow during evacuations. In this sec-
tion we study this important problem, using the concepts described
in the previous sections. In particular, we perform two experiments.
First, we identify the optimal locations for a number of pillars in
our test scenarios for each LoS condition. Then we study how the
placements of pillars optimized for each LoS condition, perform
for all other LoS conditions in each of the test scenarios. Below we
describe our optimization formulation, and then our experiments.

4.1 Optimization Formulation

Here we describe our optimization process for generating environ-
ment configurations with optimal parameters. We formulate a min-
imization of our crowd flow objective and a penalty function within
the context of an environment subspace. This section describes our
objective, penalty function and optimization algorithm.

Environment Subspace. By parameterizing an environment con-
figuration, s, we define a configuration space of an environment
from which we can draw arbitrary samples, Ssyu5. We construct
a subspace by extending the notion of an environment configura-
tion with parameter bounds, as depicted by the grey optimization
regions of Fig. 2 & 3. We indicate the parameters which the opti-
mization can manipulate as p, and the associated bounds, or con-
straints, ¢ € C.

We optimize our objective subject to constraints C, on free param-
eters p € P for a given environment subspace Ssysp, as follows:

p* = argmin(—f,(p) + g(p)) @
peEP
s.t.¢(p) = TRUE Ve € C

where f,(p), g(p) are defined as follows in Eqn. 3, 4, and 5.

Objective function. We define our objective as the opposite of
relative crowd flow, similar to [Berseth et al. 2015]. Relative crowd
flow is defined as the ratio of the number of agents that successfully
reached their destination | A.| to the average agent completion time
tavg. Crowd flow for a specific parametrization of an environment
is computed as:

> ta
= ‘AC| tavg = ach (3)
) g |A| )

tavg

f(p)

where t, is the simulation completion time of agent a, A the set of
all agents, and |A| the cardinality of set A. The environment con-
figuration is constructed from the vector of parameters p. Finally,
relative crowd flow is defined with respect to a reference or default
parametrization p, of the subspace, defined as:

fr(p) = f(p) — f(pa)- @)

Penalty function: To prevent the optimization from placing a pillar
that overlaps with other obstacles in the scene, we formulate an



overlap penalty function as follows:

g = >
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gov(01702), (5)

where

gou(01,02) = (0v(01,02) +1)(1 — fr(p)))? (6)

CMA-ES algorithm. We chose to use the Covariance Matrix
Adaptation Evolutionary Strategy(CMA-ES) [Hansen and Oster-
meier 1996] for our optimization experiments. CMA-ES is robust
for non-convex problems such as ours, handles noise and has good
convergence properties. Fig. 4 illustrates the convergence of opti-
mal environment parameters for ORCA in the bi-directional hall-
way benchmark.
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Figure 4: Parameter selection process for ORCA with 2 pillars in
the bi-directional hallway environment.

4.2 Optimizing Pillar Placements

Experiment Design. We optimize the placement of 1 — 4 pillars
for ORCA, SF, and PPR in the uni-directional and bi-directional
hallway benchmarks. Fig. 2 and 3 illustrate the optimization re-
gions (shown in grey) for pillar placements. Our CMA optimizer
required 200 iterations with each having 6 evaluations of the ob-
jective (flow rate, f(p)) to converge. Optimizations were run on
two separate machines. Linux, AMD FX(tm)-8320, having 8 Cores
with 8GB memory and OSX, Intel Xeon 2.4 GHz, having 12 Cores
with 12GB memory. The completion time for a single optimization
for ORCA and SF was around 30 minutes, whereas for PPR, it was
around 60 minutes.

Results. Optimal pillar placements produce interesting patterns
across steering simulators for different LoS conditions. Fig. 5 illus-
trates the optimal placement of 4 pillars for ORCA, PPR, and SF
in the uni-directional hallway across LoS A — E. ORCA maximizes
its crowd flow by generally placing the pillars along the boundaries
of the optimization region, forming wall-like structures for both
the uni-directional and bi-directional hallways. PPR placements
show interesting, lane-forming structures such as blocks or funnels,
which become less regular at higher density conditions. The SF
pillar placements show a tendency towards both wall-like and lane
forming structures.

4.3 Level of Service Analysis for Optimized Environ-
ments

Experiment Design. In this experiment, we examine the influ-
ence of the optimized placement of pillars on the flow-density re-

lationship across all levels of service. For each of the three algo-
rithms (ORCA,SF,PPR), we measure the optimal crowd flow val-
ues across all LoS (A — E) in the uni- and bi-directional hallways.
Experiments are repeated using 1 — 4 optimal pillar placements,
and also compared to the default benchmark, with O pillars. To ac-
count for sensitivity to initial configurations, each experiment was
repeated 200 times and the mean flow was calculated.

Results. We report the results of our experiments for both the uni-
directional and bi-directional hallway respectively.

Uni-Directional Hallway Egress. Figure 6 illustrates the flow-
density relationships for ORCA, SF and PPR for 0 — 4 optimal
pillar placements, in the uni-directional hallway. ORCA consis-
tently produces the greater flow — reaching critical density values
near LoS-C with p. = 0.6 agents/m? . This effectively increases
the level of service for higher density crowds. SF and PPR do not
exhibit a clear critical density but still we can see some increase
near LoS-C and then the curve is smooth and gradually increas-
ing. Overall, ORCA seemed to have the highest flow rate, and
conformed to the typical flow-density relationship observed in real
crowds. In contrast, SF and PPR produce atypical results where the
flow is seen to monotonically increase across all levels of service.

Bi-Directional Hallway. In the bi-directional hallway, for the flow-
density relationships for ORCA, SF and PPR for 0 — 4 optimal pil-
lar placements, SF produces the highest flow rate for all pillar con-
figurations, reaching its critical density near LoS-D. SF and PPR
produce very interesting results. The flow-density relationship of
SF is inverted, in comparison to the typical LoS curve, for all pillar
configurations near LoS-C and LoS-D. It is also interesting to ob-
serve that ORCA shows an anomalous rise in flow at LoS-D, before
dropping again, for 3 pillars. In a sense, PPR also reached a critical
density between LoS-B and LoS-C but the curve rapidly increased
afterwards. Overall, in the bi-directional scenario, SF has the high-
est flow rate and followed the typical flow-density curve. ORCA
and PPR increased along the flow-density curve after LoS-B and
did not reach critical densities in the chosen LoS range.

4.4 Flow-Density Relationships in Environments Opti-
mized for each LoS Condition

Experiment Design. In this experiment we study what happens
when we use the optimal placement of pillars obtained for one LoS
condition, for crowds that exhibit other LoS conditions. As a first
step, we optimized both scenarios under LoS conditions A — E, for
all three steering algorithms (ORCA, SF and PPR) to get the cor-
responding optimal pillar positions with the highest flow rate. We
then simulated each LoS scenario with each optimal pillar posi-
tion to observe how a scenario with a specific LoS performed when
simulated using the optimal pillar placement for another level of
service. We repeat this for all environment benchmarks, configura-
tions, algorithms, and levels of service for a total of 600 combina-
tions with 200 simulation runs each, in this experiment.

Results. We describe our results for both environment benchmarks
below.

Uni-Directional Hallway Egress. From the results of experiment
in the uni-directional hallway, all algorithms, including PPR, per-
formed similarly to their optimal LoS conditions, showing no sig-
nificant difference when simulated across different crowd densities.
ORCA outperforms both SF and PPR and produces consistently
higher flow. The best results appear to be optimizations of 1 — 3 pil-
lars with LoS B — C conditions. SF, on the other hand, formed the
critical density, p., at LoS-D (0.9 agents/m?). Overall, SF exhibits
lower crowd flow across all LoS as compared to ORCA. PPR pro-
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Figure 5: Optimal pillar placements across LoS conditions for ORCA, PPR and SF with 4 pillars in the uni-directional hallway.
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Figure 6: The optimal crowd flow values f(p), across all levels of service (A-E), for ORCA, SF, and PPR, in the uni-directional hallway.

duces a monotonically increasing flow-density curve with no criti-
cal density value.

Bi-Directional Hallway. The pattern of our results change in the bi-
directional scenario. SF outperforms the other two steering algo-
rithms for this benchmark, with the highest flow values. It exhibits
a typical flow-density curve with a p. within the LoS C-D range (p.
= 0.6 to 0.9 agents/m?). PPR plateaus and produces consistently
low flow in this particular scenario. As illustrated in Table 1, the
flow-density relationship for ORCA steadily increases across all
pillar configurations, as seen in the dense sampling of the default
no pillar scenario. However, in the LoS E optimal scenario, the one
pillar configuration exhibits an increase in flow rate across all LoS
conditions.

Conclusions. We observe that optimizing for an environment un-
der particular LoS conditions may produce interesting results under
other LoS conditions. For example, optimizing ORCA for a single
pillar under LoS E conditions produced a higher flow rate across
LoS conditions. Similarly, for SF across all number of pillars, opti-
mizing under higher density LoS conditions led to higher flow rates
across LoS conditions. The same may be true for PPR though flow
rates were not significantly increased. Though further investigation
is required, it appears that optimizing under high density conditions
may produce optimal results that generalize better across different
conditions.

5 Conclusion

This paper presents an analysis of LoS for agent-based synthetic
crowds in evacuation scenarios. We optimize the placement of pil-
lars in these environments and observe their impact on LoS. Several
interesting insights are revealed. The critical density of crowd sim-
ulators can effectively increase due to the optimal placement of 1 —
4 pillars in the environments. However, this behavior is not uniform
across simulators and environment benchmarks. Different simula-

tors optimize for different crowd patterns in an effort to maximize
the effective crowd flow. Force-based approaches and hybrid so-
lutions lead to central placements in hallways and in front of the
egress point, producing emergent lanes, while predictive methods
produce wall-like combinations of pillars that funnel agents toward
their goal. Some simulators do not reach their critical density at
LoS E, and their flow-density curves do not conform to those found
with real crowds. These experiments serve as an important pre-
cursor to computational crowd optimization and management and
motivate the need for further study using additional real and syn-
thetic crowd datasets across a larger representation of environment
benchmarks.
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