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ABSTRACT

We provide 88 challenging simulation environments that range in difficulty. The
difficulty in these environments is linked not only to the number of dimensions in
the action space but also to the task complexity. Using more complex and accurate
simulations will help push the field closer to creating human-level intelligence.
Therefore, we are releasing a number of simulation environments that include lo-
cal egocentric visual perception. These environments include randomly generated
terrain which the agent needs to learn to interpret via visual features. The library
also provides simple mechanisms to create new environments with different agent
morphologies and the option to modify the distribution of generated terrain.

1 INTRODUCTION

Research in Deep Reinforcement Learning (DRL) has grown significantly in recent years, and so
to has the demand for simulated environments that can be used to evaluate DRL methods. These
environments are meant to be used as a means to fairly compare the progress of DRL methods by
ensuring the simulation and reward function are the same across papers. Although many environ-
ments have been created, little is truly known about the difficulty of the environments. Many control
problems appear challenging due to a large number of dimensions in the control space. For example,
getting a simulated biped to walk and be robust to perturbations can be challenging, however, sim-
ple control structures were created to facilitate this control years ago (Yin et al., 2007; Kajita et al.,
2003; Yamaguchi et al., 1999; Kajita et al., 2001). The environments included in openAIGym have
similar and simpler control problems that have recently been solved using methods much simpler
than DRL. These methods include using Radial Basis Function (RBF) (Rajeswaran et al., 2017)1 and
random search in the network parameter space (Salimans et al., 2017; Mania et al., 2018). These
papers note that the improvements in DRL methods in the recent years could be focusing on the
challenges related to optimization, not exploration and discovery of good actions. Although, this
might be possible the authors view the prospects of finding solutions to these problems using less
complex methods a sign that the environments used are too simple.

In DRL we not only want to push the boundaries of how fast we can solve environments but to also
make strides in solving challenging tasks never before seen. This is increasingly important because
we want to be using DRL on problems DRL will perform the best or in some cases can only be
solved with DRL. What makes a problem challenging is not only related to the control capabilities
but also the affordances available in the environment (Gibson, 1979). Therefore, we need to shape
the affordances available to the agent as well to affect the difficulty of a task. We proved a number
of environments that can be used to challenge DRL methods.

2 RELATED WORK

There are a number of similar libraries for evaluating reinforcement learning methods. The Arcade
Learning Environment is one of the first sets of environments that was used to show the effectiveness
of DRL on tasks with high dimensional input spaces (Bellemare et al., 2012). The OpenAIGym
contains a collection of discrete action as well as continuous action tasks (Brockman et al., 2016).
OpenAI Roboschool is a version of OpenAIGym where a number of the environments have been

1Simple Nearest Neighbor Policy Method for Continuous Control Tasks
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recreated using Bullet instead of Mujoco 2.DeepMind recently released a new character motion
control library (DeepMind Control Suite) that includes control problems similar to openAIGym
with additional environments for mocap imitation (Tassa et al., 2018). The OpenAI Universe is a
different, large set of environments created with the goal it being used to create a general agent that
can play a large number of games competitively 3. The DeepMind-lab is another set of environments
that focuses on using visual inputs as observations, the visual input provides the agent with partial
information of the environment state (Beattie et al., 2016). Expanding upon the partially observable
environments is ELF that includes a novel RTS game. (Tian et al., 2017) (Fast and introduces novel
RTS game)

We provide a set of environments that include tasks similar to openAIGym and the DeepMind
Control Suite and new more challenging control problems. The simulation environments use Bul-
let (Bullet, 2015) an open source free simulator where many continuous control libraries use Mu-
joco (Todorov et al., 2012) a non-free, closed source piece of software. Many environments include
terrain features in the observation. In the environments with terrain state features the agent navigates
over is randomly generated. As a result not only does the agent need to learn to locomote but it also
needs to learn how to perceive its environment and avoid obstacles. Some environments have been
so challenging they could only be solved with Hierarchical Reinforcement Learning (HRL) tech-
niques. We provide these in hopes more will continue work in the area of HRL. Additional extra
difficultenvironments are included that have never been solved. Many of these difficult tasks were
created while working on other projects but we were not able to produce controllers to solve these
problems, or the controllers were not of sufficient quality. Last, there are different actuation mod-
els to choose from. Most libraries only offer torques as a means to actuate and control the agent’s
movement. control via torques, desired velocities, desired position and muscle-based control are
included.

3 TERRAINRLSIM

The API closely follows the openAIGym style. This reduces the assumptions put on the agent
structure. We include a mechanism to set the random seed for the simulation, allowing for repro-
ducible simulations. Many of the environments include features for the local terrain around the
agent. The observation produced by the simulation always puts these terrain features first, for exam-
ple, (< terrain− features > || < agent− features >), all as a single vector. The observation
can be sliced into multiple parts, allowing only the terrain features to be passed through convolution
layers. The software uses the Bullet Physics library (Bullet, 2015) an open source physics simulator.
The simulation performance depends primarily on the efficiency of Bullet which is highly optimized.
Overall, the simulation is fast and supports different kinds of action spaces (torque, velocity, pd and
muscle-based).

4 ENVIRONMENTS

Here we describe the types of simulation environments included in TerrainRLSim. In total there are
almost 100 environments.

4.1 TERRAINRL

The TerrainRL environments are based on the work in (Peng et al., 2016). In this work physics-based
character with Finite State Machine (FSM) controllers are parameterized and trained to traverse
complex dynamically generated terrains. Examples of different terrain types and characters are
shown in Figure 1 and Figure 2.

On top of what was created for the Terrain Adaptive Locomotion (terrainRL) project we include
additional character and terrain types. These include a Simple Biped Controller (SIMBICON) based
biped controller and a hopper controller. The new terrain types include cliffs and other more chal-
lenging versions of the ones used in the paper (Peng et al., 2015).

2https://github.com/openai/roboschool
3https://blog.openai.com/universe/
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(a) mixed terrain

(b) slopes-mixed terrain

(c) narrow-gaps terrain

(d) tight-gaps terrain

(e) slopes-gaps terrain

(f) slopes-steps terrain

(g) slopes-walls terrain

Figure 1: Dog on different terrain types.

4.2 IMITATION LEARNING

The goal in these environments is to train an agent to imitate particular behaviours described by a
motion capture clip, and is based on the work in (Peng & van de Panne, 2017). The provided clip
includes sequential character poses that are used in the reward function to instruct the character to
best match the motion capture pose. For these environments there are three types of characters that
are used, a biped, dog and dog (Figure 3). For each of these characters there are 4 different action
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(a) Raptor mixed terrain

(b) Raptor slopes-mixed terrain

(c) Raptor narrow-gaps terrain

(d) Goat on variable-steps terrain

Figure 2: Other Control Policies

models available to actuate the joints: torques, desired velocity, desired position and muscle-based
control. Example motions learned on these models are shown in Figure 4.

(a) (b) (c) (d)

Figure 3: Simulated articulated figures and their state representation. Revolute joints connect all
links. From left to right: 7-link biped; 19-link dog; 21-link dog; State features: root height, relative
position (red) of each link with respect to the root and their respective linear velocity (green).

We include additional environments for learning walking and running motions for 3D bipeds. There
are also a number of terrain types, including rough and steps, that can be used to add randomly
generated terrain into the simulation.
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(a)

(b)

(c)

(d)

Figure 4: Simulated Motions Using the PD Action Representation. The top row uses an MTU action
space while the remainder are driven by a PD action space.

4.3 DEEPLOCO

The DeepLoco environments are similar to the ones used in (Peng et al., 2017). They include a
number of 3D simulations where the goal is to train a biped to walk in complex environments with
randomly generated terrain Figure 5.

We include additional environments and configuration that were used for testing and evaluation in
the process of completing this project. These include the more challenging environments and a
version of the controller that does not use hierarchical control, such as a controller that includes the
terrain input and operates at 30 fps. The code also include processed versions of mocap clips.

4.4 PLAID

These environments are an extension of the environments in Section: 4.2. Here the agent has been
modified to have arms and the terrain is randomly generated. With the addition of randomly gen-
erated terrain additional state features are added to provide visual perception of the terrain. Part of
these environments were used in (Berseth et al., 2018). These are the only available environments
that can be used for multi-task and continual learning in the continuous action space domain for
Rienforcement Learning (RL). Examples of the environments are shown in Figure 6.

On top of the environments used in PLAiD! we add additional ones for both the dog and dog char-
acters. These additional environments are for each of the terrain types in Figure 6 and two additional
terrain types, walls and slopes-mixed. New environments were also created for a 3D biped with
different 3D terrain types are created for this biped.
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(a) soccer (b) follow-path

(c) forest (d) large-blocks

(e) dynamic obstacles

Figure 5: Snapshots of DeepLoco tasks. The red marker represents the target location and the
blue line traces the trajectory of the character’s centre of mass. in order: soccer dribbling, path
following, pillar obstacles, block obstacles, dynamic obstacles.

(a) flat (b) incline (c) steps

(d) slopes (e) gaps (f) mixed

Figure 6: The environments used to evaluate PLAiD!.

5 DISCUSSION

Many of these environments have been used to create robust controllers that produce high quality
motion. Even with the great progress in this area there is still much work to be done. These envi-
ronments use more realistic joint torque limits that true biological version of the character might be
capable of. Having realistic torque limits is a start but only captures a small portion of the complex-
ities of generating torques. For biological creatures the maximal and minimal possible joint torques
can be different depending on the direction of rotation, it can even depend on the joint pose. There
are also inaccuracies in the joint dynamics and links. In many robotics applications you have to
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cope with the issue of backlash that involves the amount of free space between the engineered parts
causing the system to move in unintended directions. There is also the complexity of flex in the
system which is sometimes intended as springs are used to absorb forces. It is possible to model
most of these phenomenon in a physics simulation already.

Apart from the physical phenomenon that we can and should modelled better in simulations used
for RL there appear to be a number of simulation parameters simulation that could be given values
more in-line with the real world. Examples of these include: linear dampening, gravity, angular
dampening, static and kinetic friction values, proper masses and densities of objects, etc. It would
increase the benefit to the community to evaluate RL methods on environments that have more
purpose and can be used in games an on robots.

As we pursue RL research we should also be pushing the simulation accuracy and task difficulty to
help us converge on solutions that will work in the real world. There is a great deal of work left to
be done before we can create human level intelligence on both more accurate simulation models and
better learning techniques.
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