
XT2: TRAINING AN X-TO-TEXT TYPING INTERFACE
WITH ONLINE LEARNING FROM IMPLICIT FEEDBACK

Jensen Gao, Siddharth Reddy, Glen Berseth, Anca D. Dragan, Sergey Levine
Department of Electrical Engineering and Computer Science
University of California, Berkeley
{jenseng,sgr,gberseth,anca,svlevine}@berkeley.edu

ABSTRACT

We aim to help users communicate their intent to machines using flexible, adap-
tive interfaces that translate arbitrary user input into desired actions. In this work,
we focus on assistive typing applications in which a user cannot operate a key-
board, but can instead supply other inputs, such as webcam images that capture
eye gaze. Standard methods train a model on a fixed dataset of user inputs, then
deploy a static interface that does not learn from its mistakes; in part, because
extracting an error signal from user behavior can be challenging. We investigate a
simple idea that would enable such interfaces to improve over time, with minimal
additional effort from the user: online learning from implicit user feedback on the
accuracy of the interface’s actions. In the typing domain, we leverage backspaces
as implicit feedback that the interface did not perform the desired action. We
propose an algorithm called x-to-text (XT2) that trains a predictive model of this
implicit feedback signal, and uses this model to fine-tune any existing, default in-
terface for translating user input into actions that select words or characters. We
evaluate XT2 through a small-scale online user study with 12 participants who
type sentences by gazing at their desired words, and a large-scale observational
study on handwriting samples from 60 users. The results show that XT2 learns to
outperform a non-adaptive default interface, stimulates user co-adaptation to the
interface, personalizes the interface to individual users, and can leverage offline
data collected from the default interface to improve its initial performance and
accelerate online learning.

1 INTRODUCTION

Recent advances in user interfaces have enabled people with sensorimotor impairments to more
effectively communicate their intent to machines. For example, Ward et al. (2000) enable users to
type characters using an eye gaze tracker instead of a keyboard, and Willett et al. (2020) enable
a paralyzed human patient to type using a brain implant that records neural activity. The main
challenge in building such interfaces is translating high-dimensional, continuous user input into
desired actions. Standard methods typically calibrate the interface on predefined training tasks for
which expert demonstrations are available, then deploy the trained interface. Unfortunately, this
does not enable the interface to improve with use or adapt to distributional shift in the user inputs.

In this paper, we focus on the problem of assistive typing: helping a user select words or characters
without access to a keyboard, using either eye gaze inputs (Ward et al., 2000) or handwriting inputs
(Willett et al., 2020). To enable any existing, default interface to continually adapt to the user, we
train a model using online learning from user feedback. The key insight is that the user provides
implicit feedback on the interface’s actions via backspaces, which indicate that the interface did not
perform the desired action in response to a given input. By learning from this implicit signal instead
of an explicit label, we do not require any additional effort from the user to improve the interface.
Furthermore, because our method is applied on top of the user’s default interface, our approach is
complementary to other work that develops state-of-the-art, domain-specific methods for problems
like gaze tracking and handwriting recognition. Figure 1 describes our algorithm: we initialize our
model using offline data generated by the default interface, deploy our interface as an augmentation
to the default interface, collect online feedback, and update our model.

1



User input: 
webcam image

Reward model

Predicted 
word

Implicit feedback: backspace

Default interfaceOur interface

Figure 1: We formulate assistive typing as a human-in-the-loop decision-making problem, in which the inter-
face observes user inputs (e.g., webcam images of eye gaze) and performs actions (e.g., word selections) on
behalf of the user. We treat a backspace as implicit feedback from the user that the interface performed the
wrong action. By training a model online to predict backspaces, we continually improve the interface.

We formulate assistive typing as an online decision-making problem, in which the interface receives
observations of user inputs, performs actions that select words or characters, and receives a reward
signal that is automatically constructed from the user’s backspaces. To improve the default inter-
face’s actions, we fit a neural network reward model that predicts the reward signal given the user’s
input and the interface’s action. Upon observing a user input, our interface uses the trained reward
model to update the prior policy given by the default interface to a posterior policy conditioned on
optimality, then samples an action from this posterior (see Figure 1). We call this method x-to-text
(XT2), where x refers to the arbitrary type of user input (e.g., eye gaze or handwriting).

Our primary contribution is the XT2 algorithm for continual learning of a communication interface
from implicit user feedback. We primarily evaluate XT2 through an online user study with 12
participants who use a webcam-based gaze tracking system to select words from a display. To run
ablation experiments that would be impractical in the online study, we also conduct an observational
study with 60 users who use a tablet and stylus to draw pictures of individual characters. The results
show that XT2 quickly learns to map input images of eye gaze or character drawings to discrete word
or character selections. By learning from online feedback, XT2 improves upon a default interface
that is only trained once using supervised learning and, as a result, suffers from distribution shift
(e.g., induced by changes in the user’s head position, lighting, and other visual conditions over
time in the eye gaze experiment). Furthermore, XT2 leverages offline data generated by the default
interface to accelerate online learning, stimulates co-adaptation from the user in the online study,
and personalizes the interface to the handwriting style of each user in the observational study.

2 LEARNING TO INFER INTENT FROM USER INPUT

In our problem setting, the user cannot directly perform actions; e.g., due to a sensorimotor im-
pairment. Instead, the user relies on an assistive typing interface to infer the user’s intended action
from available inputs such as webcam images of eye gaze or handwritten character drawings. As
such, we formulate assistive typing as a contextual bandit problem (Langford & Zhang, 2008; Yue
& Joachims, 2009; Li et al., 2010; Lan & Baraniuk, 2016; Gordon et al., 2019). At each timestep,
the user provides the interface with a context x ∈ X , where X is the set of possible user inputs (e.g.,
webcam images). The interface then performs an action u ∈ U , where U is the set of possible ac-
tions (e.g., word selections). We assume the true reward function is unknown, since the user cannot
directly specify their desired task (e.g., writing an email or filling out a form). Instead of eliciting a
reward function or explicit reward signal from the user, we automatically construct a reward signal
from the user’s backspaces. The key idea is to treat backspaces as implicit feedback on the accuracy
of the interface’s actions.

Our approach to this problem is outlined in Figure 1. We aim to minimize expected regret, which,
in our setting, is characterized by the total number of backspaces throughout the lifetime of the
interface. While a number of contextual bandit algorithms with lower regret bounds have been
proposed in prior work (Lattimore & Szepesvári, 2020), we use a simple strategy that works well in
our experiments: train a neural network reward model to predict the reward given the user’s input and
the interface’s action, and select actions with probability proportional to their predicted optimality.
Our approach is similar to prior work on deep contextual multi-armed bandits (Collier & Llorens,

2



2018) and NeuralUCB (Collier & Llorens, 2018), except that instead of using Thompson sampling
or UCB to balance exploration and exploitation, we use a simple, stochastic policy.

2.1 MODELING USER BEHAVIOR AND IMPLICIT FEEDBACK

Unlike in the standard multi-armed bandit framework, we do not get to observe an extrinsic reward
signal that captures the underlying task that the user aims to perform. To address this issue, we infer
rewards from naturally-occurring user behavior. In particular, in the assistive typing setting, we
take advantage of the fact that we can observe when the user backspaces; i.e., when they delete the
most recent word or character typed by the interface. To infer rewards from backspaces, we make
two assumptions about user behavior: (1) the user can perform a backspace action independently
of our interface; (2) the user tends to backspace incorrect actions; and (3) the user does not tend to
backspace correct actions. Hence, we assign a positive reward to actions that were not backspaced,
and assign zero reward to backspaced actions. Formally, let r ∈ {0, 1} denote this reward signal,
where r = 0 indicates an incorrect action and r = 1 indicates a correct action. For example, if the
user wants to type “banana” and provides the interface with eye gaze input x, but the interface
incorrectly types “apple”, then the user may choose to backspace “apple”, in which case the system
automatically logs the input-action-reward triple (x,u = apple, r = 0).

2.2 TRAINING THE REWARD MODEL TO PREDICT FEEDBACK

In order to perform actions that minimize expected regret – i.e., the total number of backspaces over
time – we need to learn a model that predicts whether or not the user will backspace a given action
in a given context. To do so, we learn a reward model pθ(r|x,u), where pθ is a neural network and
θ are the weights. Since the reward r ∈ {0, 1} can only take on one of two values, pθ is a binary
classifier. We train this binary classifier on a dataset D of input-action-reward triples (x,u, r). In
particular, we fit the model pθ by optimizing the maximum-likelihood objective, i.e., the binary
cross-entropy loss,

`(θ) = −
∑

(x,u,r)∈D

r log (pθ(r = 1|x,u)) + (1− r) log (1− pθ(r = 1|x,u)). (1)

Since XT2 learns from human-in-the-loop feedback, the amount of training data is limited by how
frequently the user operates the interface. To reduce the amount of online interaction data needed
to train the reward model, we use offline pretraining. We assume that the user already has access
to some default interface for typing. We also assume access to an offline dataset of input-action
pairs generated by the user and this default interface. We assign zero rewards to the backspaced
actions and positive rewards to the non-backspaced actions in this offline dataset, and initially train
our reward model to predict these rewards given the user’s inputs and the default interface’s actions.
Thus, when XT2 is initially deployed, the reward model has already been trained on the offline data,
and requires less online interaction data to reach peak accuracy.

2.3 USING THE REWARD MODEL TO SELECT ACTIONS

Even with offline pretraining, the initial reward model may not be accurate enough for practical
use. To further improve the initial performance of our interface at the onset of online training,
we combine our reward model pθ(r|x,u) with the default interface π̄(u|x). We assume that π̄
is a stochastic policy and that we can evaluate it on specific inputs, but do not require access to
its implementation. We set our policy π(u|x) = p(u|x, r = 1) to be the probability of an action
conditional on optimality, following the control-as-inference framework (Levine, 2018). Applying
Bayes’ theorem, we get p(u|x, r = 1) ∝ p(r = 1|x,u)p(u|x). The first term is given by our reward
model pθ, and the second term is given by the default interface. Combining these, we get the policy

π(u|x) ∝ pθ(r = 1|x,u)π̄(u|x). (2)

This decomposition of the policy improves the initial performance of our interface at the onset of
online training, and guides exploration for training the reward model. It also provides a framework
for incorporating a language model into our interface, as described in Section 4.3.

Our x-to-text (XT2) method is summarized in Algorithm 1. In the beginning, we assume the user has
already been operating the default interface π̄ for some time. In doing so, they generate an ‘offline’

3



Algorithm 1 X-to-Text (XT2)
Require π̄, θinit . default interface, pretrained reward model parameters
while true do

x ∼ puser(x) . user gives input
u ∼ π(u|x) ∝ pθ(r = 1|x,u)π̄(u|x) . interface performs action
r ← 0 if user backspaces else 1 . infer reward from implicit feedback
D ← D ∪ {(x,u, r)} . store online input-action-reward data
θ ← θinit +∇θ

∑
(x,u,r)∈D log (pθ(r|x,u)) . train reward model to convergence w/SGD

dataset that we use to train the initial reward model parameters θinit. When the user starts using XT2,
our interface π already improves upon the default interface π̄ by combining the default interface with
the initial reward model via Equation 2. As the user continues operating our interface, the resulting
online data is used to maintain or improve the accuracy of the reward model. At each timestep, the
user provides the interface with input x. The interface then uses the policy in Equation 2 to select
an action u. We then re-train the reward model pθ, using stochastic gradient descent to optimize the
maximum-likelihood objective in Equation 1. Appendix A.1 discusses the implementation details.

3 RELATED WORK

Prior methods for training interfaces with supervised learning typically collect a dataset of input-
action pairs, then fit a model that predicts actions given inputs. These methods tend to either assume
access to ground-truth action labels from the user (Anumanchipalli et al., 2019; Wang et al., 2016;
Karamcheti et al., 2020), or assume the user always intends to take the optimal action (Gilja et al.,
2012; Dangi et al., 2013; 2014; Merel et al., 2015). Unfortunately, the user may not always be
able to provide ground-truth action labels. Furthermore, in order for the system to compute optimal
actions, the user must be instructed to perform specific calibration tasks for which the optimal policy
is already known. These calibration tasks may not be representative of the tasks that the user intends
to perform. This can lead to a distribution mismatch between the inputs that the model is trained
on during the calibration phase, and the inputs that the model is evaluated on at test time when the
user performs their desired tasks. Standard methods address this problem by periodically repeating
the calibration process (Willett et al., 2020; Proroković et al., 2020), which can be time-consuming,
disruptive, and requires assumptions about when and how frequently to re-calibrate. XT2 overcomes
these issues by continually learning from user feedback on tasks that naturally arise as the user types,
rather than imposing separate training and test phases.

Extensive prior work on text entry systems (MacKenzie & Tanaka-Ishii, 2010) enables users to type
using eye gaze (Ward et al., 2000), Braille (Oliveira et al., 2011), gestures (Jones et al., 2010), and
palm keyboards for wearable displays (Wang et al., 2015). XT2 differs in that it enables the user to
type using arbitrary inputs like eye gaze or handwriting, rather than a fixed type of input that restricts
the flexibility of the system and must be anticipated in advance by the system designer.

XT2 trains a typing interface through reinforcement learning (RL) with human-in-the-loop feedback
instead of an explicit reward function. COACH (MacGlashan et al., 2017; Arumugam et al., 2019),
TAMER (Knox & Stone, 2009; Warnell et al., 2017), and preference learning (Sadigh et al., 2017;
Christiano et al., 2017) also train an RL agent without access to extrinsic rewards, but require explicit
user feedback on the agent’s behavior. XT2 differs in that it learns from implicit feedback, which
requires no additional effort from the user to train the agent. Other prior work trains RL agents
from implicit signals, such as electroencephalography (Xu et al., 2020), peripheral pulse measure-
ments (McDuff & Kapoor, 2019), facial expressions (Jaques et al., 2017), and clicks in web search
(Radlinski & Joachims, 2006). XT2 differs in that it trains an interface that always conditions on the
user’s input when selecting an action, rather than an autonomous agent that ignores user input after
the training phase. Furthermore, XT2 focuses on the assistive typing domain, where, to the best of
our knowledge, backspaces have not yet been used to train an interface through RL. Related work
on assistive robotic teleoperation interfaces proposes human-in-the-loop RL methods that minimally
modify the user’s actions (Pilarski et al., 2011; Broad et al., 2017; Reddy et al., 2018; Schaff & Wal-
ter, 2020; Du et al., 2020; Jeon et al., 2020). XT2 differs in that it learns to operate on arbitrary types
of user inputs, instead of assuming the user provides suboptimal action inputs.

4



4 EXPERIMENTAL EVALUATION

We seek to answer the following questions: Q1: Does XT2 improve with use and learn to outperform
a non-adaptive interface? Q2: Does the user adapt to the interface while the interface adapts to the
user? Q3: Does XT2 personalize the interface to different input styles? Q4: Do offline pretraining
and an informative prior policy accelerate online learning? Q5: Does online learning improve the
interface beyond the initialization provided by offline pretraining? To answer Q1-2, we run a user
study with 12 participants who use webcam images of their eyes to type via gaze (see Figure 1). To
answer Q3-5, we conduct an observational study with prerecorded images of handwritten characters
drawn by 60 users with a tablet and stylus (see Figure 5 in the appendix). In our experiments, we
use default interfaces that are not necessarily the state of the art in gaze tracking or handwriting
recognition, but are instead chosen to test the hypotheses in Q1-5. Appendix A.1 describes the
experiment design and implementation of XT2 in detail.

4.1 ADAPTING THE INTERFACE TO THE USER

In this experiment, we aim to test XT2’s ability to improve over time, relative to a non-adaptive,
default interface. To that end, we formulate a gaze-based word selection task in which we display
a list of words to the user (see Figure 1), ask them to look at their desired word, record an image
from their webcam that captures their eye gaze, and predict their desired word. To measure objective
performance, we ask the user to type specific goal sentences. To simplify the experiment, we restrict
the action space U = {1, 2, 3, ..., 8} to the eight buttons on the screen, and always assign the next
word in the sentence to one of those eight buttons (see Figure 1).

We evaluate (1) a default interface that uses iTracker (Krafka et al., 2016) to estimate the user’s 2D
gaze position on the screen and select the nearest button, and (2) XT2. We calibrate the default
interface once at the beginning of each experimental condition for each user, by asking the user to
look at each of the eight buttons one by one, recording 20 eye image samples for each button in 2
cycles, and training a 2D gaze position estimator using the iTracker method. After calibration, the
default interface stays fixed, and does not adapt to the user within the session; in part, because we do
not know in advance which word the user intends to select, so we cannot automatically harvest the
necessary paired data of gaze images and targets to re-calibrate the interface. Instead of periodically
interrupting the user to gather new paired data and re-calibrate, XT2 continually adapts to the user
throughout the session, following Algorithm 1. Appendix A.1 describes the implementation of the
default interface and XT2 in further detail. We measure the performance of each method using the
ground-truth accuracy of action selections. To access ground-truth actions for calculating accuracy,
we instruct the user to try to select a specified word from the list displayed on their screen. Note
that this instruction is not an essential component of XT2, and is used purely to evaluate objective
performance in this experiment.

The results in panel (a) of Figure 2 show that at the onset of online learning, both XT2 and the
default interface predict the user’s intended action with the same accuracy, but quickly diverge. The
default interface’s performance degrades over time, potentially due to distribution shift in the user’s
inputs caused by changes in head position, background lighting, and other visual conditions. In
contrast, XT2 maintains the interface’s strong initial performance throughout the experiment, by
continually updating the reward model to reflect changes in the user’s inputs. Panel (b) shows that
XT2 significantly improves the performance of 10 out of 12 participants, and that there are dimin-
ishing returns to XT2 when the default interface already performs well. We ran a one-way repeated
measures ANOVA on the action prediction accuracy dependent measure from the default and XT2
conditions, with the presence of XT2 as a factor, and found that f(1, 11) = 17.23, p < 0.01. The
subjective evaluations in Table 2 in the appendix corroborate these results: users reported feeling
that XT2 selected the words they wanted and improved over time more than the default interface.
Panel (c) qualitatively illustrates how XT2 helps the interface recover from incorrect 2D gaze posi-
tion estimates: each green ‘x’ shows that even when the default interface estimates a gaze position
far from the intended button, which would normally cause an incorrect action prediction, the reward
model can adjust the overall action prediction back to the correct button via Equation 2. We also find
that XT2 performs well even when the user’s implicit feedback is slightly noisy: the user backspaces
mistakes, and does not backspace correct actions, in 98.6% of their interactions.

5



X
T2

’s
 

A
cc

ur
ac

y

Default 
Interface’s 
Accuracy

(a) (b) (c)

Figure 2: An online user study with 12 participants in the gaze tracking domain that addresses Q1: does XT2
improve with use and learn to outperform a non-adaptive interface? (a) XT2 predicts the user’s intended action
more accurately than the default interface, and the gap between the two methods grows over time. We smooth
the curves using a moving average with a window size of 20 interactions, and measure standard error across
the 12 users. (b) XT2 improves the performance of 10 out of the 12 users, and the improvement from XT2 is
smaller when the default interface already performs well. Each orange circle represents one of the 12 users.
The dashed gray line shows default-equivalent performance, and the dotted orange lines show the difference
between XT2 and default performance. Per-user accuracy is averaged across 250 interactions. (c) As shown in
the screenshot in Figure 1, the user is shown a display of eight words arranged in a circle. Here, we plot the
default interface’s 2D gaze position estimates given user inputs intended to select the gray button. If the default
interface’s action prediction would have been accurate without XT2, we mark a circle (vs. an ‘x’). If XT2’s
action prediction was accurate, we mark green (vs. red). In particular, each green ‘x’ represents an accurate
prediction by XT2 that would have been an inaccurate prediction by the default interface. By training a reward
model on user feedback, XT2 helps the interface recover from incorrect gaze estimates.

4.2 USER ADAPTATION TO THE INTERFACE

Figure 3: A counterfactual experiment with the on-
line user study data that addresses Q2: does the user
adapt to the interface while the interface adapts to the
user? Training and evaluating XT2 on user inputs orig-
inally intended for the default interface leads to worse
performance than doing so on user inputs intended for
XT2 (orange vs. teal). Evaluating the default inter-
face on inputs intended for XT2 leads to worse perfor-
mance than evaluating XT2 on the same inputs (orange
vs. gray). These results suggest that the user adapts
their input style specifically to XT2, and that this user
co-adaptation improves performance. We smooth the
curves using a moving average with a window size of
20 interactions, and measure standard error across the
12 users.

In the previous experiment, we tested XT2’s
ability to adapt the interface to the user. Prior
work on human-machine co-adaptation (Niko-
laidis et al., 2017) and the evolution of commu-
nication protocols between humans (Hawkins
et al., 2020) suggests that an adaptive interface
may not only learn to assist a static user, but
even stimulate the user to adapt their input style
to the interface. In this experiment, we investi-
gate whether the user adapts to the gaze-based
interface described in Section 4.1. To do so, we
perform a counterfactual experiment: instead of
training and evaluating XT2 on inputs x gener-
ated by the user while they were typing with
XT2, we train and evaluate XT2 on inputs x
generated by the user while they were typing
with the default interface. During the counter-
factual experiment, instead of asking the user
for new inputs, we simply replay the old inputs
that were intended for the default interface, and
automate backspaces. This enables us to test if
the user adapted their inputs to XT2, or if the
user provided the same distribution of inputs to
both the default interface and XT2.

The results in Figure 3 suggest that the user
does indeed adapt their input style to the in-
terface, and that this user adaptation improves
performance. Comparing XT2’s actual perfor-
mance (orange curve) to XT2’s counterfactual
performance on replayed user inputs that the user originally intended for the default interface (teal

6



curve), we see that XT2 is able to perform much better with inputs intended for XT2 compared to in-
puts intended for the default interface. From this result alone, one might infer that the user provided
XT2 with inputs that were more generically predictable than the inputs they provided to the default
interface. However, by comparing the default interface’s performance on replayed user inputs that
the user originally intended for XT2 (gray curve) to XT2’s performance on the same inputs (orange
curve), we see that XT2 performs better than the default interface on the same inputs. This suggests
that the user’s inputs to XT2 are not merely easier to predict, but in fact adapted specifically to XT2.
In other words, XT2 stimulates user co-adaptation to the interface.

4.3 PERSONALIZING THE INTERFACE FOR DIFFERENT USERS

In this experiment, we demonstrate XT2’s ability to operate on a different type of user input: draw-
ings of characters (see Figure 5 in the appendix); which, for some users, can be easier to provide
than direct keystrokes (Willett et al., 2020). We also investigate to what extent XT2 learns a person-
alized interface that is uniquely adapted to the individual user. To that end, we analyze handwriting
samples from 60 users, collected through a tablet and stylus, from the UJI Pen Characters Database
(Llorens et al., 2008). Each sample consists of a sequence of 2D positions that traces the trajectory
of the user’s pen tip as they draw a known character. We conduct an observational study with this
data by sampling goal sentences, replaying a randomly-selected handwriting sample of the user’s
desired next character from the goal sentence, and treating each drawing as the user input x; akin
to the replay experiment in Section 4.2. This observational study is equivalent to an online study,
except that it does not permit user co-adaptation to the interface since it replays logged user inputs,
and assumes that the implicit feedback signal is not noisy when automating backspaces. To test
XT2’s robustness to noise and distributional shift in the user’s input, we perturb the replayed pen tip
positions by adding Brownian noise (see Figure 5 in the appendix).

We evaluate (1) a default interface trained to classify handwritten EMNIST characters (Cohen
et al., 2017), and (2) XT2. We intentionally train the default interface on EMNIST images in-
stead of UJI Pen Characters drawings, to model real-world applications with a distribution mis-
match between the training data and test data, as discussed in Section 3. To address the chal-
lenge of selecting from 27 possible character actions, we use a language model (Dai et al., 2019)
to predict the prior likelihood of an action pLM(u) given the preceding characters in the user’s
text field. We use this language model in both the default interface and XT2. In particular,
we set π̄(u|x) ∝ pφ(u|x)pLM(u), where pφ is the EMNIST image classifier. As in Section
4.1, the default interface stays fixed throughout the experiment and does not adapt to the user,
since re-training the default interface would require interrupting the user to collect paired data.

Evaluation

Training User 1 User 2 User 3 User 4

User 1 .887 .339 .511 .320
User 2 .425 .896 .275 .103
User 3 .633 .697 .841 .505
User 4 .266 .740 .294 .866

Table 1: An observational study with 60 users in
the handwriting recognition domain that addresses Q3:
does XT2 personalize the interface to different input
styles? We measure action prediction accuracy across
1000 interactions, and randomly sample users 1-4 from
the pool of 60 users. The interface trained on user i is
substantially more accurate when evaluated on inputs
from user i than on inputs from user j, suggesting that
the learned interface is personalized to each individual
user.

The results in Figure 4 show that XT2 signifi-
cantly outperforms the default interface (orange
vs. gray). We ran a one-way repeated measures
ANOVA on the action prediction accuracy de-
pendent measure from the default and XT2 con-
ditions, with the presence of XT2 as a factor,
and found that f(1, 59) = 309.95, p < 0.001.
Furthermore, Table 1 shows that XT2 learns an
interface that is particularly suited to the user
whose data it was trained on: when an inter-
face trained on user i’s data is evaluated on data
from user j 6= i instead of user i, performance
degrades substantially.

4.4 ABLATION EXPERIMENTS

In this experiment, we aim to test the importance of three components of XT2: offline pre-
training, an informative prior policy, and online learning. As discussed in Sections 2.2 and
2.3, to improve the initial performance of XT2 and accelerate online learning, we pretrain
on offline data collected using the default interface, and incorporate prior knowledge from
the default interface into the prior policy π̄ in Equation 2. Using the handwriting recog-

7



nition task from Section 4.3, we conduct ablation experiments in which we drop out each
of the three components, one by one, and measure any resulting changes in performance.

Figure 4: An observational study with 60 users in the
handwriting recognition domain that addresses Q4-5:
do offline pretraining and an informative prior policy
accelerate online learning, and does online learning im-
prove the interface beyond the initialization provided
by offline pretraining? In this ablation experiment, we
remove each of the three components – offline pretrain-
ing, an informative prior policy, and online learning –
one by one, and find that each component is critical for
maintaining high action prediction accuracy at different
stages of the experiment.

In the first condition, we test the effect of not
performing offline pretraining, by initializing
XT2 with random weights θinit. In the second
condition, we test the effect of not incorporat-
ing prior knowledge into our policy, by setting
the prior policy π̄ to be a uniform distribution
over actions. In the third condition, we test the
effect of not learning online and instead relying
solely on offline pretraining, by freezing the re-
ward model parameters after offline pretraining
and not storing any online data.

The results in Figure 4 show that using the de-
fault interface as a prior policy in Equation 2 is
critical for XT2’s performance throughout the
experiment (orange vs. red). This is unsur-
prising, given that the default interface contains
useful prior knowledge about how to interpret
user inputs. Offline pretraining is also helpful
at the onset of online learning (orange vs. teal),
but does not have a substantial effect on per-
formance after some online data has been col-
lected. This is also unsurprising, since leverag-
ing offline data is only necessary when insuf-
ficient online data has been collected. Online
learning is not particularly helpful at the onset
of the experiment (orange vs. purple), but has
a substantial effect on performance over time.
This result shows that learning from on-policy
data is critical for XT2. In other words, XT2
learns best when it learns from its own mistakes, rather than the mistakes of the default interface.

5 DISCUSSION

We propose the x-to-text (XT2) algorithm for continual learning of a communication interface from
online, implicit user feedback. The key idea is to infer a reward signal from user behavior, and train
the interface through reinforcement learning. We instantiate this idea in the typing domain by treat-
ing backspaces as implicit signals that the interface performed incorrect actions. In our online user
study on gaze-based word selection, we show that XT2 learns to outperform a non-adaptive inter-
face in under 30 minutes (including offline data collection), and that the user simultaneously adapts
their input style to the interface. In our observational study on handwritten character recognition,
we show that XT2 can personalize the interface to individual users, and that offline pretraining and
incorporating prior knowledge from the default interface are helpful for improving the initial per-
formance of XT2 and accelerating online learning. These experiments broadly illustrate how online
learning from implicit user feedback can be used to train a human-machine interface.

Our formulation of the assistance problem as a contextual bandit is limited in that it does not incor-
porate temporal context into decision-making. One direction for further algorithm development is
to extend XT2 to use more general reinforcement learning algorithms (Sutton & Barto, 2018) that
can learn sequential assistance policies. XT2 is also limited in that the benefit from using XT2 to
fine-tune the default interface may decrease as the default interface is improved, as suggested by
the diminishing returns in Figure 2. One direction for future empirical work is to test XT2 with
state-of-the-art default interfaces. Methods like XT2 that learn from their mistakes and stimulate
user co-adaptation provide a general mechanism for improving user interfaces; not only for assistive
typing, but also for other domains, such as brain-computer interfaces for prosthetic limb control and
augmented reality displays for visually-impaired users.

8



REFERENCES

Gopala K Anumanchipalli, Josh Chartier, and Edward F Chang. Speech synthesis from neural
decoding of spoken sentences. Nature, 2019.

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman. Deep reinforcement learning
from policy-dependent human feedback. arXiv preprint arXiv:1902.04257, 2019.

Alexander Broad, Todd David Murphey, and Brenna Dee Argall. Learning models for shared control
of human-machine systems with unknown dynamics. In Robotics: Science and Systems, 2017.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep re-
inforcement learning from human preferences. In Neural Information Processing Systems, 2017.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In International Joint Conference on Neural Networks, 2017.

Mark Collier and Hector Urdiales Llorens. Deep contextual multi-armed bandits. arXiv preprint
arXiv:1807.09809, 2018.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Siddharth Dangi, Amy L Orsborn, Helene G Moorman, and Jose M Carmena. Design and analysis
of closed-loop decoder adaptation algorithms for brain-machine interfaces. Neural computation,
2013.

Siddharth Dangi, Suraj Gowda, Helene G Moorman, Amy L Orsborn, Kelvin So, Maryam Shanechi,
and Jose M Carmena. Continuous closed-loop decoder adaptation with a recursive maximum
likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces. Neural
computation, 2014.

Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, and Anca Dragan. Ave:
Assistance via empowerment. arXiv preprint arXiv:2006.14796, 2020.

Vikash Gilja, Paul Nuyujukian, Cindy A Chestek, John P Cunningham, M Yu Byron, Joline M
Fan, Mark M Churchland, Matthew T Kaufman, Jonathan C Kao, Stephen I Ryu, et al. A high-
performance neural prosthesis enabled by control algorithm design. Nature neuroscience, 2012.

Ethan K Gordon, Xiang Meng, Matt Barnes, Tapomayukh Bhattacharjee, and Siddhartha S Srini-
vasa. Adaptive robot-assisted feeding: An online learning framework for acquiring previously-
unseen food items. arXiv preprint arXiv:1908.07088, 2019.

Robert D Hawkins, Michael C Frank, and Noah D Goodman. Characterizing the dynamics of
learning in repeated reference games. Cognitive Science, 2020.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E
Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
els with kl-control. In International Conference on Machine Learning, 2017.

Hong Jun Jeon, Dylan P Losey, and Dorsa Sadigh. Shared autonomy with learned latent actions.
arXiv preprint arXiv:2005.03210, 2020.

Eleanor Jones, Jason Alexander, Andreas Andreou, Pourang Irani, and Sriram Subramanian. Ges-
text: accelerometer-based gestural text-entry systems. In SIGCHI Conference on Human Factors
in Computing Systems, 2010.

Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang. Learning adaptive language interfaces
through decomposition. arXiv preprint arXiv:2010.05190, 2020.

9



Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In International Conference on Knowledge Capture, 2009.

Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wojciech
Matusik, and Antonio Torralba. Eye tracking for everyone. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

Andrew S Lan and Richard G Baraniuk. A contextual bandits framework for personalized learning
action selection. In Educational Data Mining, 2016.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In Neural Information Processing Systems, 2008.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In International Conference on World Wide Web,
2010.

David Llorens, Federico Prat, Andrés Marzal, Juan Miguel Vilar, Marı́a José Castro, Juan-
Carlos Amengual, Sergio Barrachina, Antonio Castellanos, Salvador Espana Boquera, Jon Ander
Gómez, et al. The ujipenchars database: a pen-based database of isolated handwritten characters.
In International Conference on Language Resources and Evaluation, 2008.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, David Roberts, Matthew E Taylor, and
Michael L Littman. Interactive learning from policy-dependent human feedback. arXiv preprint
arXiv:1701.06049, 2017.

I Scott MacKenzie and Kumiko Tanaka-Ishii. Text entry systems: Mobility, accessibility, universal-
ity. 2010.

Joseph G Makin, David A Moses, and Edward F Chang. Machine translation of cortical activity to
text with an encoder–decoder framework. Technical report, 2020.

Daniel McDuff and Ashish Kapoor. Visceral machines: Reinforcement learning with intrinsic
physiological rewards. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=SyNvti09KQ.

Josh Merel, David Carlson, Liam Paninski, and John P Cunningham. Neuroprosthetic decoder
training as imitation learning. arXiv preprint arXiv:1511.04156, 2015.

Stefanos Nikolaidis, Yu Xiang Zhu, David Hsu, and Siddhartha Srinivasa. Human-robot mutual
adaptation in shared autonomy. In ACM/IEEE International Conference on Human-Robot Inter-
action, 2017.

João Oliveira, Tiago Guerreiro, Hugo Nicolau, Joaquim Jorge, and Daniel Gonçalves. Brailletype:
unleashing braille over touch screen mobile phones. In IFIP Conference on Human-Computer
Interaction, 2011.

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and
Richard S Sutton. Online human training of a myoelectric prosthesis controller via actor-critic
reinforcement learning. In IEEE International Conference on Rehabilitation Robotics, 2011.

Krsto Proroković, Michael Wand, and Jürgen Schmidhuber. Meta-learning for recalibration of emg-
based upper limb prostheses. 2020.

Filip Radlinski and Thorsten Joachims. Evaluating the robustness of learning from implicit feed-
back. arXiv preprint cs/0605036, 2006.

10



Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared autonomy via deep reinforcement
learning. arXiv preprint arXiv:1802.01744, 2018.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learn-
ing of reward functions. In Robotics: Science and Systems, 2017.

Charles Schaff and Matthew R Walter. Residual policy learning for shared autonomy. arXiv preprint
arXiv:2004.05097, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Cheng-Yao Wang, Wei-Chen Chu, Po-Tsung Chiu, Min-Chieh Hsiu, Yih-Harn Chiang, and Mike Y
Chen. Palmtype: Using palms as keyboards for smart glasses. In International Conference on
Human-Computer Interaction with Mobile Devices and Services, 2015.

Sida I Wang, Percy Liang, and Christopher D Manning. Learning language games through interac-
tion. arXiv preprint arXiv:1606.02447, 2016.

David J Ward, Alan F Blackwell, and David JC MacKay. Dasher—a data entry interface using
continuous gestures and language models. In ACM Symposium on User Interface Software and
Technology, 2000.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interactive
agent shaping in high-dimensional state spaces. arXiv preprint arXiv:1709.10163, 2017.

Francis R Willett, Donald T Avansino, Leigh R Hochberg, Jaimie M Henderson, and Krishna V
Shenoy. High-performance brain-to-text communication via imagined handwriting. bioRxiv,
2020.

Alan Wrench. The mocha-timit articulatory database, 1999.

Duo Xu, Mohit Agarwal, Faramarz Fekri, and Raghupathy Sivakumar. Accelerating reinforcement
learning agent with eeg-based implicit human feedback. arXiv preprint arXiv:2006.16498, 2020.

Yisong Yue and Thorsten Joachims. Interactively optimizing information retrieval systems as a
dueling bandits problem. In International Conference on Machine Learning, 2009.

11



A APPENDIX

A.1 IMPLEMENTATION DETAILS

Stochastic gradient descent. We use Adam (Kingma & Ba, 2014) to optimize the maximum-
likelihood objective in Equation 1.

Offline pretraining. To pretrain XT2 on offline data, we first train the reward model pθ to con-
vergence on the offline data, and store the learned network weights θinit. Once a minimum of four
online input-action-reward triples have been collected, after every interaction, we re-train the reward
model pθ to convergence on the data collected online, using the values θinit to initialize the network
weights (e.g., instead of a random initialization).

A.1.1 ONLINE USER STUDY: TYPING WITH EYE GAZE

Eye image features. Instead of operating directly on 224x224 images of the user’s eyes, we use the
activations of the last fully-connected layer in the iTracker model (Krafka et al., 2016) as the input x
to our reward model pθ(r|x,u). When training the reward model pθ, we freeze the iTracker network
weights used to generate this 128-dimensional input x.

Reward model architecture and learning. We set the learning rate for Adam to 10−3, and batch
size to 128. In our experiments, for every input x, there is exactly one desired action u∗ that
will result in a positive reward r = 1, while all other actions u 6= u∗ result in a zero reward
r = 0. In other words, p(r = 1|x,u) = p(u = u∗|x). Hence, we structure the reward model for
XT2 as pθ(r = 1|x,u) = fθ(u|x), where fθ is an action classifier. Furthermore, since we expect
the reward model to learn to implicitly estimate the user’s gaze position in order to predict ac-
tions, we directly incorporate this inductive bias into the model: we structure the action classifier as
fθ(u|x) ∝ exp (−‖gθ(x)− pos(u)‖2), where gθ(x) outputs a 2D position of the user’s estimated
gaze, and pos(u) is the known 2D position of the button for action u. Note that even though gθ(x)
outputs a 2D position, the parameters θ are still trained on the reward prediction objective in Equa-
tion 1 (e.g., instead of a 2D gaze position prediction objective). We represent gθ using a feedforward
neural network with one hidden layer containing 64 units, a dropout layer with a dropout rate of 0.3
between the hidden layer and the output layer, and ReLU activations. At each timestep t, we record
10 eye images {xit}10i=1 at a sampling rate of 10 Hz, and average our predictions over these 10 inputs.
Specifically, for XT2, we set gθ(xt) = 1

10

∑10
i=1 gθ(x

i
t). For the default interface, we average the 2D

gaze position estimates across the 10 samples before predicting the action whose button position is
nearest to the average gaze position estimate. We initialize θinit with the offline pretraining scheme
described in Section 2.2, using 250 input-action-reward triples collected with the default interface.

Experiment design. We recruited 11 male and 1 female participants, with an average age of 21.
Each participant was provided with the rules of the task and a short practice period of 20 interactions
to familiarize themselves with the system. Each interaction – which consisted of providing an input,
observing the interface’s action, and deciding whether or not to backspace – took an average of 4
seconds. Each participant completed three phases of experiments: A, B, and C. In phase A, they
operate the default interface for 250 steps, generating an offline dataset of input-action-reward triples
that we use to initialize XT2. In phase B, they operate XT2 for 250 steps. In phase C, they operate
the default interface for 250 steps. To avoid the confounding effects of user learning or fatigue over
time, we counterbalance the order of phase B and C: six randomly-selected participants completed
phase B before C, and the other six participants completed phase C before B. Phase A is used
solely to generate offline data to initialize XT2 in phase B. One participant’s room lighting changed
substantially during phase B. Since their performance during phase A was substantially better than
during phase B, we use their phase A data (instead of phase B data) to measure the default interface’s
performance on this one participant. We sample goal sentences from the MOCHA-TIMIT database
(Wrench, 1999), following prior work on speech interfaces (Makin et al., 2020). We set the same
goal sentences for each user in each condition.

Deterministic policy. In our experiments, we find that sampling actions u ∼ π(u|x) from the
stochastic policy π does not substantially improve exploration, and can in fact degrade perfor-
mance by not always choosing the optimal action. This is most likely due to the use of the default
interface π̄ in Equation 2, which already provides an effective exploration mechanism. Hence,

12



instead of randomly sampling actions, we deterministically select the highest-likelihood action:
u← arg maxu π(u|x).

A.1.2 OBSERVATIONAL STUDY: TYPING BY DRAWING CHARACTERS

Perturbing user inputs. We perturb the character drawings in the UJI Pen Characters Database
by decomposing each drawing into a sequence of pen tip velocity vectors, adding Brownian noise
to each velocity, then integrating over the perturbed velocities to yield a complete, perturbed draw-
ing (see Figure 5 in the appendix). We compute the Brownian noise by sampling an independent
Gaussian noise vector with zero mean and variance of 2 · 10−4 at each timestep, and summing over
these noise vectors from time 0 to time t to compute the Brownian noise vector for time t. The
same Brownian noise vector is applied to all the velocity segments in a given drawing. Each user
input x is a 28x28 image of the user’s complete, perturbed drawing of a given character. There are
27 possible characters in the action space U : 26 lower-case letters, and space (which we represent
using the digit 7).

Reward model architecture and learning. We set the learning rate for Adam to 5 · 10−4, batch
size to 128, pretrain on the offline data for 20 epochs, and sample actions from the stochastic policy
described in Equation 2 (instead of the deterministic policy described in Appendix A.1.1). We also
limit the size of the replay buffer D in Algorithm 1 to the latest 500 input-action-reward triples. We
represent the reward model pθ as a neural network with the following architecture: 28x28 input layer,
32x5x5 convolutional layer, 2x2 max pool layer, dropout layer with dropout rate of 0.3, 64x5x5
convolutional layer, 2x2 max pool layer, dropout layer with dropout rate of 0.3, and a fully-connected
output layer. We initialize θinit with the offline pretraining scheme described in Section 2.2, using
1000 input-action-reward triples collected with the default interface.

Experiment design. The UJI Pen Characters Database (Llorens et al., 2008) contains handwriting
samples from 60 users. For each user, it includes two repetitions of lowercase letters, uppercase
letters, and 10 digits, for a total of 1364 samples per user. In our observational study, we randomly
sample target sentences, and replay user inputs that attempt to type the characters in those target
sentences. In the replays, we automatically backspace incorrect actions; a realistic modeling choice,
given that in the online user study in Section 4.1, the user did indeed backspace mistakes, and did
not backspace correct actions, in 98.6% of their interactions. As in the online user study, we run
each user’s data through two conditions: default and XT2. Since this is an observational study, we
do not need to counterbalance the order of the two conditions. For the personalization experiment in
Table 1, we assign a randomly-selected, constant value to the random seed of the Brownian noise for
each user in each condition. This ensures that comparisons between entry (i, i) and entries (i, j 6= i)
in the 4x4 table are not confounded by differences in the input noise, and are only influenced by
systematic differences in the users’ individual handwriting styles. As in the online user study, we
sample goal sentences from the MOCHA-TIMIT database (Wrench, 1999), and set the same goal
sentences for each user in each condition.

Language model. We use the Transformer-XL language model (Dai et al., 2019) – specifically,
the word-level version that is pretrained on the One Billion Word dataset (Chelba et al., 2013) –
to compute the prior likelihood pLM(u). To compute character-level likelihoods, we marginalize
over the 60000 words in the language model’s vocabulary that occur the most frequently in the One
Billion Word training corpus, not including words with punctuation and converting upper-case to
lower-case characters. We feed the previously-typed characters in the current sentence (i.e., not
including the previous sentences) as context to the language model.

13



p-value Default Interface XT2
The system selected the words I wanted < .05 4.50 5.42
The system improved over time < .05 3.17 4.75
I improved at using the system over time > .05 4.08 4.42
The system did not select the words I wanted < .05 4.08 2.83
The system got worse over time > .05 3.25 2.42
I got worse at using the system over time > .05 3.25 2.67
I backspaced when there was a mistake > .05 5.42 5.83
I ignored mistakes (did not backspace them) > .05 2.33 2.17

Table 2: Subjective evaluations from the 12 participants in the online user study. Means reported below for
responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 =
Strongly Agree. p-values from a one-way repeated measures ANOVA with the presence of XT2 as a factor
influencing responses.

14



Figure 5: Handwriting samples from the UJI Pen Characters Database that have been perturbed by adding
Brownian noise to pen tip velocities. The left-most column shows the true input, and each successive column
shows the perturbed input after 100-timestep intervals.

15


