
ACCLMesh: Curvature-Based Navigation Mesh Generation

Glen Berseth1, Mubbasir Kapadia2 and Petros Faloutsos3
1University of British Columbia 2Rutgers University 3York University

(a) (b) (c) (d)

Figure 1: (a) Using curvature to characterize traversability on a 3D mesh. (b) The method to compute navigation meshes can handle
complex 3D surfaces. (c) Evaluating height clearance with the navigation mesh allows agents to walk under a slanted overpass safely. (d)
The approach can be integrated into standard navigation and animation systems to simulate thousands of agents on 3D surfaces in real-time.

Abstract

We propose a method to robustly and efficiently compute a navi-
gation mesh for arbitrary and dynamic 3D environments based on
curvature. This method addresses a number of known limitations
in state-of-the-art techniques to produce navigation meshes that are
tightly coupled to the original geometry, incorporate geometric de-
tails that are crucial for movement decisions and robustly handle
complex surfaces. We integrate the method into a standard naviga-
tion and collision-avoidance system to simulate thousands of agents
on complex 3D surfaces in real-time.

CR Categories: Artificial Intelligence [I.2.11]: Distributed Artifi-
cial Intelligence—Multiagent Systems Computer Graphics [I.3.7]:
Three-Dimensional Graphics and Realism—Animation;

Keywords: navigation mesh, crowd simulation, curvature

1 Introduction

Computer simulations involving autonomous virtual agents are be-
coming increasingly complex. Content construction often leads to
large-scale, complex virtual worlds with a high level of geometric
detail. A suitable representation of the traversable areas of these
virtual environments is needed to facilitate efficient pathfinding
queries while encoding environment geometry details that impact
movement decisions.

Prior work has developed robust solutions for navigation mesh
(NavMesh) generation for planar environments or restricted 3D en-
vironments that can be mapped to two dimensions. Voxel-based ap-
proaches [Memononen 2014] approximate the environment geome-

try and adaptively eliminate non-traversable geometry using ad-hoc
heuristics (e.g., angular constraints relative to gravity). In an effort
to produce meshes that are optimized for pathfinding operations,
these approaches produce a NavMesh that is decoupled from the
original mesh, lose important surface details that are important for
movement decisions and don’t generalize for unstructured, arbitrar-
ily complex 3D surface meshes.

In this work, a method is proposed to compute a NavMesh that con-
siders the terrain as a curved surface. Instead of using height maps
or relative angle constraints on an approximation of the original ge-
ometry, discrete curvature is used to characterize the traversability
of the geometric elements directly. The surface acceleration is cal-
culated from the discrete curvature, this leads to the method being
called ACCLMesh1. Given an agent’s typical velocity, constraints
are used to determine traversability on a surface, thus making the
computed NavMesh a function of the agent’s intrinsic movement
capabilities. Since the computed NavMesh is generated directly
from the original surface data, it offers a number of important ad-
vantages: (a) the output triangles are a subset of the original surface
triangles and therefore do not intersect the original mesh; (b) there
is no need to map the 3D environment to layered planar meshes,
eliminating the need for NavMesh stitching; (c) the NavMesh in-
corporates important surface details that are essential for movement
decisions; (d) since curvature calculations are local, the computa-
tional complexity of the approach scales linearly with the number
of vertices in the mesh and facilitates dynamic NavMesh repair and
(e) there exists a smooth function between geometrical changes in
the mesh and the boundaries of the calculated traversable area.

ACCLMesh is compared to a current state-of-the-art solution Re-
cast [Memononen 2014] on a number of challenging environment
benchmarks including concave surfaces, large unstructured land-
scapes, asteroids, dynamic environments, and even the tentacles of
an octopus. The ACCLMesh method is able to handle complex sur-
faces while encoding the mesh features that are essential for nav-
igation. This framework is integrated with standard solutions for
path planning and local collision-avoidance to simulate thousands
of agents navigating on complex 3D terrain in real-time. The paper
concludes with a discussion of other potential curvature calcula-
tion methods and the tradeoffs between our proposed method and
current approaches which tradeoff accuracy and completeness for
efficient path calculations.

1pronounced ”accel-mesh”

2 Related Work

There is a growing body of research in discrete representations
of environments that are amenable to efficient global navigation
queries. These approaches generate a graph representing connec-
tivity of free space in the environment which can be used by stan-
dard search algorithms [Pearl 1984] to find collision-free paths. We
provide a broad overview below and refer the readers to [Kapadia
and Badler 2013; Kallmann and Kapadia 2014] for additional de-
tails. Complementary to this is the problem of local movement of
agents [Pelechano et al. 2008] that follow these global paths, while
avoiding static as well as dynamic threats, which are not discussed
here.

Grids are classical representations for path planning and are com-
monly used in virtual agent navigation [Shao and Terzopoulos
2005]. However, the computation time and solution quality greatly
depends on the chosen resolution and can quickly become pro-
hibitive for large environments. Roadmap approaches [Arikan et al.
2001; Sud et al. 2007] capture the connectivity of the free space but
are unable to represent the geometry of the scene, and are not suit-
able for dynamically changing environments.

Navigation meshes [Kallmann and Kapadia 2014] partition the
traversable space of the scene into convex regions, and offer an
efficient decomposition of the environment. These include Ex-
plicit Corridor Maps [Geraerts 2010], local clearance triangula-
tions on planar meshes [Kallmann 2010], portal graphs [Oliva and
Pelechano 2011], waypoint graphs [Wardhana et al. 2013], and
voxel-based approaches [Memononen 2014]. Extensions to these
approaches facilitate efficient repairs in dynamic environments [van
Toll et al. 2012; Kallmann 2014].

Navigation meshes for multi-layered and non-planar environments
have also been developed in order to address 3D scenes [van Toll
et al. 2011; Lamarche 2009; Jorgensen and Lamarche 2011; Oliva
and Pelechano 2013; Memononen 2014]. These algorithms work
well on surfaces that have a distortion-free map from 3D to 2.5D
but are not suitable for arbitrary surfaces.

Researchers have also demonstrated the use of multiple environ-
ment representations [Kapadia et al. 2013b] and massive paral-
lelization [Kapadia et al. 2013a; Garcia et al. 2014] to achieve
computational speedup. Our work complements these approaches
by proposing a novel navigation mesh representation for arbitrarily
complex 3D environments.

Limitations. Previous work provides robust solutions that generate
navigation meshes for specific environments types (e.g., 2D planar
environments, or 3D environments which can be easily mapped to
layered 2D environments). However, these approaches suffer from
a number of limitations when dealing with arbitrarily complex 3D
environments. Figures 2(a)-(c) illustrate navigation meshes that
were generated using Recast. We observe that the NavMesh does
not tightly fit the environment, and does not completely capture all
traversable areas. In contrast, ACCLMesh is able to handle arbitrar-
ily complex 3D surfaces, as seen in (d)-(f).

3 Traversability

In this section the metric that is used to determine the traversability
on a surface is described. First, curvature is discussed and then how
the acceleration on a surface is calculated given the curvature.

Curvature The measure of curvature used for this work is the
mean curvature (κH) [Meyer et al. 2003]. This method formulates
discrete mean curvature as the area gradient around each vertex.

This formulation of curvature is appropriate because it works lo-
cally however, there are other methods to compute curvature. For
example, it may be better to use a quadratic fitting method which
can be more accurate when the geometry is course or noisy. Curva-
ture is a reasonable metric for determining the difficulty of travers-
ing an area.

Acceleration Curvature is normalized, and therefore has no no-
tion of scale. Scale is incorporated principally by converting the
curvature into an acceleration. Intuitively this conversion is accom-
plished by considering the instantaneous cyclic motion of the oscu-
lating circle, as follows:

a =
v2

r
=

v2

1/κH
= v2κ, (1)

where v is the speed along the curve. A non-unit speed, v, can
be used to ensure that the resulting surface acceleration properly
matches the agent’s scale. For example, using this parameter the
approach can calculate a proper NavMesh whether the agents rep-
resent humans, animals or insects.

Obstacles Areas of high acceleration can then be defined as ob-
stacles. Areas of the surface with acceleration below an agent spe-
cific threshold amax are considered traversable. The area of the
surface that is considered non-traversable is an obstacle is defined
as the region or regions of the surface with acceleration > amax.

An additional benefit of acceleration over curvature, is that acceler-
ation can be more intuitively considered as a measure of the effort
it would take an agent to traverse an area or path. In this sense, AC-
CLMesh can potentially encode additional information about the
environment. For example, the algorithm includes an optional step
that can account for overhead clearance.

4 Computing the Navigation Mesh

This section details how acceleration, Equation 1, is used to com-
pute a NavMesh. Specific subtleties and issues that arise in the
process are also discussed.

Method Overview Given a mesh representing a terrain, an agent-
specific threshold for acceptable acceleration, amax, and an agent
specific speed parameter, v, the following steps outlined below are
used to compute a NavMesh. Figure 3 shows the main steps of
the algorithm applied on an example mesh. The remainder of this
section explains the steps of the algorithm in more detail.

Calculating Acceleration Boundaries One key feature of the
proposed method is it can calculate the specific location of the ac-
celeration boundary on a surface. This is achieved by essentially
splitting edges of triangles as follows (Figure 3(b)).

Let there be some function fcut that takes as input two points x1 and
x2, with associated accelerations, and outputs a value in (0, 1) that
determines the location between the two points where the accelera-
tion is equal to amax. The cut function can be any kind of formula
to best approximate the continuous curvature between two discrete
points. For most of the examples in this work a linear blending
approach facc(x1, x2, amax) is used as fcut:

facc(x1, x2, amax) =
amax

|(acc(x2)− acc(x1))| . (2)

(a) (b) (c) (d) (e) (f)

Figure 2: Comparisons between Recast (a)-(c) and ACCLMesh (d)-(f). Compared to Recast, ACCLMesh does not intersect with the original
geometry (d), can tightly fit any obstacle (e), and can efficiently handle complex surfaces with varied granularity (f).

(a) (b) (c)

(d) (e) (f)

Figure 3: Algorithm Overview. (a) Original mesh. (b) Red vertices have acceleration a > amax. (c) Detection of biased edges, and biased
edge splitting. (d) Computing cut points for edges with origin vertex a < amax, and end point vertex a > amax. Cut vertices highlighted in
green. (e), (f) Re-triangulate and compute NavMesh in blue.

Figure 4: An example of the biased edge issue. If the edge dividing
the two triangles (dotted purple line) in the triangulation happens
to connect two vertices with acceleration > amax, then the result
is the triangulation on the left. However, if one vertex of the divid-
ing edge has acceleration < amax, then the resulting triangulation
with be the example on the right.

If a very tight bound on the geometry is desired the cut function
could return a number ε close to 1. This effect is demonstrated
visually in Figure 7(e,f).

Biased Edges Simply removing edges that have vertices with
acceleration > amax at both ends can lead to some undesired re-
sults. It assumes that the acceleration between those vertices is
above amax. However, if the four vertices of a pair of adjacent tri-
angles is considered with 3 bad vertices between them, if the edge
dividing the triangles happens to be flipped the resulting accelera-
tion boundary would be different (see Figure 4).

In 2D a simple solution is to flip the edge. In 3D, edge flipping

can result in different triangles with different angles at edges. Edge
flipping would also deviate from the original geometry of the en-
vironment. Instead, in order to reduce the bias, the problem edge
is split, making a new vertex xnew and the acceleration at xnew is
set to the weighted sum of the neighbouring vertices, where each
weight is the inverse relative distance of the neighbour. If dnew is
the sum of distances between xnew and its neighbours N(xnew),
then the acceleration is calculated as:

a(xnew) =
∑

x∈N(xnew)

(
||xnew − x||

dnew
) · acc(x). (3)

Two results of biased edge splitting can be seen in Figure 3(c) as
new circles. The colour of xnew is red if the acceleration for the
new vertex is above amax, otherwise it is gray.

Height Clearance For 3D environments, the notion of clearance
under objects is important. Although accounting for clearance can
happen during other stages of an application, such as during sim-
ulation in character navigation, it is often convenient and more ef-
ficient to account for it with a NavMesh. The algorithm includes
an optional height clearance stage that refines the NavMesh accord-
ing to an agent specific height value h. In this case, areas of the
environment are trimmed where a simulated agent, with height h,
would intersect geometry, for example an overhead barrier or a low
ceiling. We chose a distance calculation method as it offers a good
balance between quality, performance and ease of implementation.
We describe the method as follows:

1. For every vertex x in the mesh with acc(x) < amax

2. For every triangle t find the point p on t closest to x
3. If this distance is < h

(a) For each of the triangles around x
i. Check if p is indeed above the triangle by con-

structing a tetrahedra with p and the triangle
ii. If the dihedral angles for that tetrahedra are all <

π/2 then p is definitely over the triangle

This height clearance check is conservative and will remove extra
portions of the surface triangles to be safe. If this check is positive
an acceleration is assigned to x that is greater than amax which
results in this vertex being removed from the NavMesh.

Calculating The Navigation Mesh After all accelerations have
been computed and cut vertices have been identified from the previ-
ous stages (Figure 3(d)), a re-triangulation needs to be performed.
The additional cut vertices must be integrated into the mesh before
triangles can be selected for the NavMesh based on the acceleration
of each triangles vertices. This is done by adding an edge between
the new cut vertices and another between one of the new cut ver-
tices and the vertex this cut vertex is not connected to. The result
of these steps can be seen in Figures 3(e) and 3(f). After all new
triangles are triangulated the final step is to mark all triangles that
have at least one vertex x, where acc(x) < amax. These triangles
form the resulting NavMesh.

Gravity is straightforward to include a step that accounts for grav-
ity in this method. This can be done by removing any triangles
from the NavMesh whose orientation deviates from the direction of
gravity more than a user defined threshold.

5 Features and Usage

In This section we discusses the features of the proposed method
and how it is used in a practical setting. One example feature is,
simulating crowds of agents on a NavMesh computed with the AC-
CLMesh method.

Pathfinding and Local-Collision Avoidance The NavMesh
generated using our method can be integrated into standard
pathfinding and collision-avoidance pipelines for multi-agent path
planning and crowd simulation. An example is shown using
A* [Hart et al. 1968] for pathfinding and a standard predictive col-
lision avoidance algorithm (ORCA) [van den Berg et al. 2011].
ORCA is designed to work on planar environments and we discuss
the main modifications we used to generalize it to 3D environments.

Path Planning. The output mesh can be transformed into a navi-
gation graph Σ = 〈V,E〉, where V is the set of all vertices in the
NavMesh with acceleration, a < amax, and E is the set of viable
transitions between adjacent vertices. Path planning is thus reduced
to a discrete search that generates a sequence of edge traversals
π = Plan(Σ, s,g) from the start location s to the goal location g.
This can be accomplished using A* [Hart et al. 1968] or its vari-
ants. For optimal path computation, the geodesic distance should
be used as a heuristic estimate. A method similar to SVG [Ying
et al. 2013] that uses a global saddle vertex graph to approximiate
optimial paths, could work well for realtime applications. A Eu-
clidean distance measure worked well for the results shown in this
work.

Obstacle Querying. Most collision-avoidance approaches need to
query the presence of obstacles in an agent’s vicinity when resolv-
ing collisions. Obstacles are closed polygons constructed from the

(a) (b)

Figure 5: The acceleration (a) and computed NavMesh (b) result
of using the ACCLMesh method on some example terrain.

list of vertices that make up the boundaries of high acceleration ar-
eas. These boundaries are highlighted in magenta in Figure 1(c) or
the blue boundaries in Figure 3(e).

Movement on Mesh Surface. Agents are initialized on the mesh
and associated with the triangle they are closest to. To check if an
agent is in a triangle, a simple raycast down from the agent’s head
through the agent’s feet is done. The agent-to-triangle association
needs to be updated, with the agent’s new position, at each frame.
If the agent is still inside the same triangle, nothing needs to be
done. If the agent is no longer in the same triangle, neighbouring
triangles will be checked and the agent-to-triangle association will
be updated with the new triangle the agent is closest to. The agent-
to-triangle association is used to determine the movement of the
agent along the NavMesh surface.

6 Results

In this section, ACCLMesh is evaluated experimentally, and demon-
strations of its main features are described.

Figures 5(a and b) and 2(b and e) compare the NavMesh produced
by ACCLMesh against Recast on a mesh with terrain features often
found in computer simulations. Figure 5(a) illustrates the acceler-
ation calculations where blue is low acceleration and acceleration
increases as the colours transition from blue to cyan to green to yel-
low and finally to red. A red colour corresponds to an acceleration
value above amax. Figure 5(b) shows the NavMesh that ACCLMesh
method produces, and 2(b) shows the NavMesh from Recast. Our
method produces a NavMesh that closely fits the original geometry.
Mesh simplification methods could be used to reduce the number of
triangles in the NavMesh, especially in the flat areas, at the cost of
deviating from the original geometry. For example, vertex removal
should work well as a mapping between the original vertices and
the remaining vertices in the NavMesh can be maintained and local
fixes could be done to fit the path to the original mesh.

Figures 1(a) and 6(a and b) show a similar comparison for a
challenging terrain in the shape of an octopus. The long nar-
row geometry has low acceleration and could be considered easily
traversable. Our curvature-based method comfortably eliminates
the sharp edges around the arm’s sides as seen in 6(a). In contrast,
Recast fails to produce connected geometry and results in many thin
safe NavMesh patches, some intersecting the original geometry, as
seen in Figure 6(b).

Figure 2(c) shows that Recast generates a NavMesh for a small part
at the top of the asteroid (in blue) but ignored the rest of the as-
teroid’s surface (in brown). This is due to the naive assumption
of gravity that Recast makes. As can be seen in Figure 1(b), AC-
CLMesh fits the geometry much better and does not suffer from the
same naive assumption of gravity.

Using a curvature-based method to generate a NavMesh has a sub-

(a) (b)

Figure 6: We compare the ACCLMesh result to Recast. AC-
CLMesh keeps more of the smooth geometry over the entire surface
because it does not approximate the surface geometry. The accel-
eration on this mesh can be seen in Figure 1(a).

tlety that is related to the resolution of the original data. In some
cases ACCLMesh will not produce pleasing results when coarse ge-
ometries are present. An example of this type of geometry can be
seen in Figure 7(a and c). The curvature-based approach does not
handle this geometry well because there are technically no areas
of low mean curvature κH along the ramp. The red region in Fig-
ure 7(a) shows that the entire ramp has acceleration that exceeds the
threshold, resulting in a NavMesh that excludes the ramp, as seen
in Figure 7(c). Figure 7(b and d) show the same geometry sub-
divided to produce new vertices in the middle of this ramp, which
results in areas of low acceleration Figure 7(b). With the subdivided
mesh ACCLMesh produces a proper NavMesh along the ramp Fig-
ure 7(d).

The tightness of the resulting NavMesh and its fit to the geometry
can be controlled using the appropriate cut function, Section 4. For
example, the cut function ft can be used to output a number be-
tween 0 and 1 for any pair of points. In Figure 7(e) this number is
always 0.9 and in Figure 7(f) it is 0.99. It is clear from the figure
that this cut function can produce very tight boundaries around ar-
eas of high acceleration, and at the limit shrink them to zero. This
effect could potentially be applied to Recast as well, by arbitrar-
ily increasing the resolution of the voxelization. However, it would
significantly increase Recast’s memory requirements and computa-
tion time and still produce only an approximation of the underlying
geometry.

Computational Performance We compare the computational
performance of ACCLMesh to Recast [Memononen 2014] over a
set of terrains represented by triangle meshes. The results of this
comparison can be seen in Table 1. The first mesh (ramp) is shown
in Figure 7(d). The second environment is the same as the first
but scaled to be ∼ 10 times larger. The scaling was done because
Recast was giving very poor results on the small mesh. The third
mesh represents a fairly large scale terrain which can be seen in
Figure 1(d). The fourth mesh is the asteroid shown in Figure 2(f).

Table 1 shows that the proposed method can be orders of magnitude
faster than Recast. However, we should note that Recast produces
a mesh with very few triangles. It is fair to assume that potentially
significant computation time is spent on keeping the number of tri-
angles in the resulting mesh low. Nevertheless, the performance
comparison shows that ACCLMesh is efficient and can therefore
serve as the first stage of a pipeline that further processes the result-
ing NavMesh to satisfy the requirements of a particular application.

Crowd Simulation The resulting NavMesh can be used for multi-
agent path planning and local-collision avoidance. Figure 1(d) il-
lustrates a crowd of more than 1000 agents simulated on the com-
plex 3D terrain using ORCA [van den Berg et al. 2011]. We also

Mesh Ramp S-Ramp Terrain Asteroid

triangles 5128 5128 65536 213252
vertices 2661 2661 33153 106629
B-box 1.142e3m3 1.130e6m3 2.775e6m3 4.741e6m3

ACCLMesh 16.1ms 16.1ms 204.8ms 989ms
Recast 34.8ms 392.2ms 913.9ms 4233.3ms

Table 1: Performance comparison between ACCLMesh and Re-
cast in milliseconds.

show an example where we use the clearance check technique to
eliminate traversable areas that would lead to torso or head colli-
sions with geometry that folds over on itself, such as the overpass
in Figure 1(c).

7 Conclusion

This paper presents a curvature-based approach to analyze
traversability on arbitrary surfaces and efficiently compute nav-
igation meshes for complex 3D environments. In comparison
to the current state-of-the-art, the approach produces navigation
meshes that are tightly coupled to the original surface, thus avoid-
ing mesh intersections and agent movement artifacts. The method
incorporates the surface details necessary for navigation decisions,
and can handle complex 3D surfaces where other approaches fall
short. ACCLMesh is extended to include a height clearance checks.
ACCLMesh can be easily integrated into standard navigation and
collision-avoidance systems to simulate dense crowds on 3D sur-
faces at interactive rates.

There are several avenues of future exploration. Our work can
be integrated with constraint-based approaches [Ninomiya et al.
2014] to compute paths that satisfy user-defined spatial constraints.
Recent work in environment optimization [Berseth et al. 2015b;
Berseth et al. 2014] could benefit from a more robust and computa-
tionally inexpensive NavMesh generation method. We are actively
exploring how our approach can be integrated into other crowd
simulation approaches [Singh et al. 2011a; Kapadia et al. 2012],
and extended to handle more complex agent representations [Singh
et al. 2011b; Berseth et al. 2015a].

References

ARIKAN, O., CHENNEY, S., AND FORSYTH, D. A. 2001. Effi-
cient multi-agent path planning. In In Proceedings of the 2001
Eurographics Workshop on Animation and Simulation, 151–162.

BERSETH, G., HAWORTH, M. B., KAPADIA, M., AND FALOUT-
SOS, P. 2014. Characterizing and optimizing game level diffi-
culty. In Proceedings of the Seventh International Conference on
Motion in Games, ACM, New York, NY, USA, MIG ’14, 153–
160.

BERSETH, G., KAPADIA, M., AND FALOUTSOS, P. 2015. Robust
space-time footsteps for agent-based steering. Computer Anima-
tion and Virtual Worlds.

BERSETH, G., USMAN, M., HAWORTH, B., KAPADIA, M., AND
FALOUTSOS, P. 2015. Environment optimization for crowd
evacuation. Computer Animation and Virtual Worlds 26, 3-4,
377–386.

GARCIA, F., KAPADIA, M., AND BADLER, N. 2014. Gpu-based
dynamic search on adaptive resolution grids. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on,
1631–1638.

(a) (b) (c) (d) (e) ft = 0.9 (f) ft = 0.99

Figure 7: A ramp on the side of a raised platform. The figures (a,c) show the acceleration calculations and NavMesh without subdivision.
The Figures (b,d) show the corresponding calculations after subdivision. Tightening the areas of high acceleration with the cut function, ft,
for the ramp example, is shown in (e,f).

GERAERTS, R. 2010. Planning short paths with clearance using
explicit corridors. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, 1997–2004.

HART, P., NILSSON, N., AND RAPHAEL, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. Systems
Science and Cybernetics, IEEE Transactions on 4, 2 (July), 100–
107.

JORGENSEN, C.-J., AND LAMARCHE, F. 2011. From geome-
try to spatial reasoning: Automatic structuring of 3d virtual en-
vironments. In International Conference on Motion in Games,
Springer-Verlag, 353–364.

KALLMANN, M., AND KAPADIA, M. 2014. Navigation meshes
and real-time dynamic planning for virtual worlds. In ACM
SIGGRAPH 2014 Courses, ACM, New York, NY, USA, SIG-
GRAPH ’14, 3:1–3:81.

KALLMANN, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In ACM SIGGRAPH/EG Symposium
on Computer Animation, 159–168.

KALLMANN, M. 2014. Dynamic and robust local clearance trian-
gulations. ACM Trans. Graph. 33, 5 (Sept.), 161:1–161:17.

KAPADIA, M., AND BADLER, N. I. 2013. Navigation and steer-
ing for autonomous virtual humans. Wiley Interdisciplinary Re-
views: Cognitive Science 4, 3, 263–272.

KAPADIA, M., SINGH, S., HEWLETT, W., REINMAN, G., AND
FALOUTSOS, P. 2012. Parallelized egocentric fields for au-
tonomous navigation. The Visual Computer 28, 12, 1209–1227.

KAPADIA, M., GARCIA, F., BOATRIGHT, C., AND BADLER, N.
2013. Dynamic search on the gpu. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on,
3332–3337.

KAPADIA, M., BEACCO, A., GARCIA, F., REDDY, V.,
PELECHANO, N., AND BADLER, N. I. 2013. Multi-domain
real-time planning in dynamic environments. In Proceedings of
the 12th ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, ACM, New York, NY, USA, SCA ’13, 115–
124.

LAMARCHE, F. 2009. Topoplan: a topological path planner for
real time human navigation under floor and ceiling constraints.
Computer Graphics Forum 28, 2, 649–658.

MEMONONEN, M. 2014. Recast: Navigation-mesh toolset for
games.

MEYER, M., DESBRUN, M., SCHRDER, P., AND BARR, A.
2003. Discrete differential-geometry operators for triangulated
2-manifolds. In Visualization and Mathematics III, H.-C. Hege
and K. Polthier, Eds., Mathematics and Visualization. Springer
Berlin Heidelberg, 35–57.

NINOMIYA, K., KAPADIA, M., SHOULSON, A., GARCIA, F.,
AND BADLER, N. 2014. Planning approaches to constraint-
aware navigation in dynamic environments. Computer Anima-
tion and Virtual Worlds, n/a–n/a.

OLIVA, R., AND PELECHANO, N. 2011. Automatic generation of
suboptimal navmeshes. In Motion in Games. Springer, 328–339.

OLIVA, R., AND PELECHANO, N. 2013. Neogen: Near opti-
mal generator of navigation meshes for 3d multi-layered envi-
ronments. Computers & Graphics 37, 5, 403 – 412.

PEARL, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2008.
Virtual crowds: Methods, simulation, and control. Synthesis Lec-
tures on Computer Graphics and Animation 3, 1, 1–176.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestri-
ans. In Proceedings of the ACM SIGGRAPH/EG Symposium on
Computer Animation, 19–28.

SINGH, S., KAPADIA, M., HEWLETT, B., REINMAN, G., AND
FALOUTSOS, P. 2011. A modular framework for adaptive
agent-based steering. In Symposium on Interactive 3D Graph-
ics and Games, ACM, New York, NY, USA, I3D ’11, 141–150
PAGE@9.

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151–158.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In Proceedings of the 2007
ACM Symposium on Virtual Reality Software and Technology,
ACM, New York, NY, USA, VRST ’07, 99–106.

VAN DEN BERG, J., GUY, S. J., LIN, M., AND MANOCHA, D.
2011. Reciprocal n-body collision avoidance. In Robotics Re-
search, vol. 70. 3–19.

VAN TOLL, W., COOK, A., AND GERAERTS, R. 2011. Navigation
meshes for realistic multi-layered environments. In IEEE/RSJ
Intelligent Robots and Systems, 3526–3532.

VAN TOLL, W. G., COOK, A. F., AND GERAERTS, R. 2012. A
navigation mesh for dynamic environments. Comput. Animat.
Virtual Worlds 23, 6 (Nov.), 535–546.

WARDHANA, N., JOHAN, H., AND SEAH, H. 2013. Enhanced
waypoint graph for surface and volumetric path planning in vir-
tual worlds. The Visual Computer 29, 10, 1051–1062.

YING, X., WANG, X., AND HE, Y. 2013. Saddle vertex graph
(svg): A novel solution to the discrete geodesic problem. ACM
Trans. Graph. 32, 6 (Nov.), 170:1–170:12.

